281 research outputs found

    Spectral geometry, homogeneous spaces, and differential forms with finite Fourier series

    Full text link
    Let G be a compact Lie group acting transitively on Riemannian manifolds M and N. Let p be a G equivariant Riemannian submersion from M to N. We show that a smooth differential form on N has finite Fourier series if and only if the pull back has finite Fourier series on

    Irreducible Scalar Many-Body Casimir Energies: Theorems and Numerical Studies

    Full text link
    We define irreducible N-body spectral functions and Casimir energies and consider a massless scalar quantum field interacting locally by positive potentials with classical objects. Irreducible N-body spectral functions in this case are shown to be conditional probabilities of random walks. The corresponding irreducible contributions to scalar many-body Casimir energies are finite and positive/negative for an odd/even number of objects. The force between any two finite objects separable by a plane is always attractive in this case. Analytical and numerical world-line results for the irreducible four-body Casimir energy of a scalar with Dirichlet boundary conditions on a tic-tac-toe pattern of lines are presented. Numerical results for the irreducible three-body Casimir energy of a massless scalar satisfying Dirichlet boundary conditions on three intersecting lines forming an isosceles triangle are also reported. In both cases the symmetric configuration (square and isosceles triangle) corresponds to the minimal irreducible contribution to the Casimir energy.Comment: Writeup of talk given at QFEXT11 (Sept.18-24) in Benasque, Spain. 10 pages, 3 figure

    Examples of signature (2,2) manifolds with commuting curvature operators

    Full text link
    We exhibit Walker manifolds of signature (2,2) with various commutativity properties for the Ricci operator, the skew-symmetric curvature operator, and the Jacobi operator. If the Walker metric is a Riemannian extension of an underlying affine structure A, these properties are related to the Ricci tensor of A

    Non-commutative geometry and the standard model vacuum

    Full text link
    The space of Dirac operators for the Connes-Chamseddine spectral action for the standard model of particle physics coupled to gravity is studied. The model is extended by including right-handed neutrino states, and the S0-reality axiom is not assumed. The possibility of allowing more general fluctuations than the inner fluctuations of the vacuum is proposed. The maximal case of all possible fluctuations is studied by considering the equations of motion for the vacuum. Whilst there are interesting non-trivial vacua with Majorana-like mass terms for the leptons, the conclusion is that the equations are too restrictive to allow solutions with the standard model mass matrix.Comment: 21 pages. v2: some comments improve

    The trace of the heat kernel on a compact hyperbolic 3-orbifold

    Full text link
    The heat coefficients related to the Laplace-Beltrami operator defined on the hyperbolic compact manifold H^3/\Ga are evaluated in the case in which the discrete group \Ga contains elliptic and hyperbolic elements. It is shown that while hyperbolic elements give only exponentially vanishing corrections to the trace of the heat kernel, elliptic elements modify all coefficients of the asymptotic expansion, but the Weyl term, which remains unchanged. Some physical consequences are briefly discussed in the examples.Comment: 11 page

    Multiple reflection expansion and heat kernel coefficients

    Get PDF
    We propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct a relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the multiple reflection expansion is shown to be non-convergent.Comment: 21 pages, corrected for some misprint

    Strong ellipticity and spectral properties of chiral bag boundary conditions

    Full text link
    We prove strong ellipticity of chiral bag boundary conditions on even dimensional manifolds. From a knowledge of the heat kernel in an infinite cylinder, some basic properties of the zeta function are analyzed on cylindrical product manifolds of arbitrary even dimension.Comment: 16 pages, LaTeX, References adde

    Detection and localization of speech in the presence of competing speech signals

    Get PDF
    Presented at the 12th International Conference on Auditory Display (ICAD), London, UK, June 20-23, 2006.Auditory displays are often used to convey important information in complex operational environments. One problem with these displays is that potentially critical information can be corrupted or lost when multiple warning sounds are presented at the same time. In this experiment, we examined a listener's ability to detect and localize a target speech token in the presence of from 1 to 5 simultaneous competing speech tokens. Two conditions were examined: a condition in which all of the speech tokens were presented from the same location (the `co-located' condition) and a condition in which the speech tokens were presented from different random locations (the `spatially separated' condition). The results suggest that both detection and localization degrade as the number of competing sounds increases. However, the changes in detection performance were found to be surprisingly small and there appeared to be little or no benefit of spatial separation for detection. Localization, on the other hand, was found to degrade substantially and systematically as the number of competing speech tokens increased. Overall, these results suggest that listeners are able to extract substantial information from these speech tokens even when the target is presented with 5 competing simultaneous sounds

    General Relativity in terms of Dirac Eigenvalues

    Get PDF
    The eigenvalues of the Dirac operator on a curved spacetime are diffeomorphism-invariant functions of the geometry. They form an infinite set of ``observables'' for general relativity. Recent work of Chamseddine and Connes suggests that they can be taken as variables for an invariant description of the gravitational field's dynamics. We compute the Poisson brackets of these eigenvalues and find them in terms of the energy-momentum of the eigenspinors and the propagator of the linearized Einstein equations. We show that the eigenspinors' energy-momentum is the Jacobian matrix of the change of coordinates from metric to eigenvalues. We also consider a minor modification of the spectral action, which eliminates the disturbing huge cosmological term and derive its equations of motion. These are satisfied if the energy momentum of the trans Planckian eigenspinors scale linearly with the eigenvalue; we argue that this requirement approximates the Einstein equations.Comment: 6 pages, RevTe

    Vacuum polarization of massive scalar fields in the spacetime of the electrically charged nonlinear black hole

    Get PDF
    The approximate renormalized stress-energy tensor of the quantized massive conformally coupled scalar field in the spacetime of electrically charged nonlinear black hole is constructed. It is achieved by functional differentiation of the lowest order of the DeWitt-Schwinger effective action involving coincidence limit of the Hadamard-Minakshisundaram-DeWitt-Seely coefficient a3.a_{3}. The result is compared with the analogous result derived for the Reissner-Nordstr\"om black hole. It is shown that the most important differences occur in the vicinity of the event horizon of the black hole near the extremality limit. The structure of the nonlinear black hole is briefly studied by means of the Lambert functions.Comment: 22 pages, 10 figure
    • …
    corecore