1,236 research outputs found
Curvature Constraints from the Causal Entropic Principle
Current cosmological observations indicate a preference for a cosmological
constant that is drastically smaller than what can be explained by conventional
particle physics. The Causal Entropic Principle (Bousso, {\it et al}.) provides
an alternative approach to anthropic attempts to predict our observed value of
the cosmological constant by calculating the entropy created within a causal
diamond. We have extended this work to use the Causal Entropic Principle to
predict the preferred curvature within the "multiverse". We have found that
values larger than are disfavored by more than 99.99% and a
peak value at and
for open universes. For universes that allow only positive curvature or both
positive and negative curvature, we find a correlation between curvature and
dark energy that leads to an extended region of preferred values. Our universe
is found to be disfavored to an extent depending the priors on curvature. We
also provide a comparison to previous anthropic constraints on open universes
and discuss future directions for this work.Comment: 5 pages, 3 Figure
Spectroscopy of the Clock Transition of Sr in an Optical Lattice
We report on the spectroscopy of the clock transition of atoms (natural linewidth of 1
mHz) trapped in a one-dimensional optical lattice. Recoilless transitions with
a linewidth of 0.7 kHz as well as the vibrational structure of the lattice
potential were observed. By investigating the wavelength dependence of the
carrier linewidth, we determined the magic wavelength, where the light shift in
the clock transition vanishes, to be nm.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett. (09/May/2003
Linearized self-forces for branes
We compute the regularized force density and renormalized action due to
fields of external origin coupled to a brane of arbitrary dimension in a
spacetime of any dimension. Specifically, we consider forces generated by
gravitational, dilatonic and generalized antisymmetric form-fields. The force
density is regularized using a recently developed gradient operator. For the
case of a Nambu--Goto brane, we show that the regularization leads to a
renormalization of the tension, which is seen to be the same in both
approaches. We discuss the specific couplings which lead to cancellation of the
self-force in this case.Comment: 15 page
The flatness problem and
By way of a complete integration of the Friedmann equations, in terms of
observables, it is shown that for the cosmological constant there
exist non-flat FLRW models for which the total density parameter
remains throughout the entire history of the universe. Further, it is
shown that in a precise quantitative sense these models are not finely tuned.
When observations are brought to bear on the theory, and in particular the WMAP
observations, they confirm that we live in just such a universe. The conclusion
holds when the classical notion of is extended to dark energy.Comment: Final form to appear in Physical Review Letters. Further information
at http://grtensor.org/Robertson
How (Not) to Palatini
We revisit the problem of defining non-minimal gravity in the first order
formalism. Specializing to scalar-tensor theories, which may be disguised as
`higher-derivative' models with the gravitational Lagrangians that depend only
on the Ricci scalar, we show how to recast these theories as Palatini-like
gravities. The correct formulation utilizes the Lagrange multiplier method,
which preserves the canonical structure of the theory, and yields the
conventional metric scalar-tensor gravity. We explain the discrepancies between
the na\"ive Palatini and the Lagrange multiplier approach, showing that the
na\"ive Palatini approach really swaps the theory for another. The differences
disappear only in the limit of ordinary General Relativity, where an accidental
redundancy ensures that the na\"ive Palatini works there. We outline the
correct decoupling limits and the strong coupling regimes. As a corollary we
find that the so-called `Modified Source Gravity' models suffer from strong
coupling problems at very low scales, and hence cannot be a realistic
approximation of our universe. We also comment on a method to decouple the
extra scalar using the chameleon mechanism.Comment: 18 pages, LaTeX; added references and minor improvements in sec
Optically controlled spin-glasses in multi-qubit cavity systems
Recent advances in nanostructure fabrication and optical control, suggest
that it will soon be possible to prepare collections of interacting two-level
systems (i.e. qubits) within an optical cavity. Here we show theoretically that
such systems could exhibit novel phase transition phenomena involving
spin-glass phases. By contrast with traditional realizations using magnetic
solids, these phase transition phenomena are associated with both matter and
radiation subsystems. Moreover the various phase transitions should be tunable
simply by varying the matter-radiation coupling strength.Comment: 4 pages, 3 figure
Drastic effects of damping mechanisms on the third-order optical nonlinearity
We have investigated the optical response of superradiant atoms, which
undergoes three different damping mechanisms: radiative dissipation
(), dephasing (), and nonradiative dissipation
(). Whereas the roles of and are equivalent in
the linear susceptibility, the third-order nonlinear susceptibility drastically
depends on the ratio of and : When , the third-order susceptibility is essentially that of a single atom.
Contrarily, in the opposite case of , the third-order
susceptibility suffers the size-enhancement effect and becomes proportional to
the system size.Comment: 5pages, 2figure
Mach's Principle and Model for a Broken Symmetric Theory of Gravity
We investigate spontaneous symmetry breaking in a conformally invariant
gravitational model. In particular, we use a conformally invariant scalar
tensor theory as the vacuum sector of a gravitational model to examine the idea
that gravitational coupling may be the result of a spontaneous symmetry
breaking. In this model matter is taken to be coupled with a metric which is
different but conformally related to the metric appearing explicitly in the
vacuum sector. We show that after the spontaneous symmetry breaking the
resulting theory is consistent with Mach's principle in the sense that inertial
masses of particles have variable configurations in a cosmological context.
Moreover, our analysis allows to construct a mechanism in which the resulting
large vacuum energy density relaxes during evolution of the universe.Comment: 9 pages, no figure
Generation of scalar-tensor gravity effects in equilibrium state boson stars
Boson stars in zero-, one-, and two-node equilibrium states are modeled
numerically within the framework of Scalar-Tensor Gravity. The complex scalar
field is taken to be both massive and self-interacting. Configurations are
formed in the case of a linear gravitational scalar coupling (the Brans-Dicke
case) and a quadratic coupling which has been used previously in a cosmological
context. The coupling parameters and asymptotic value for the gravitational
scalar field are chosen so that the known observational constraints on
Scalar-Tensor Gravity are satisfied. It is found that the constraints are so
restrictive that the field equations of General Relativity and Scalar-Tensor
gravity yield virtually identical solutions. We then use catastrophe theory to
determine the dynamically stable configurations. It is found that the maximum
mass allowed for a stable state in Scalar-Tensor gravity in the present
cosmological era is essentially unchanged from that of General Relativity. We
also construct boson star configurations appropriate to earlier cosmological
eras and find that the maximum mass for stable states is smaller than that
predicted by General Relativity, and the more so for earlier eras. However, our
results also show that if the cosmological era is early enough then only states
with positive binding energy can be constructed.Comment: 20 pages, RevTeX, 11 figures, to appear in Class. Quantum Grav.,
comments added, refs update
- …