6,309 research outputs found

    The central black hole masses and Doppler factors of the Îł\gamma-ray loud blazars

    Full text link
    In this paper, The central black hole masses and the Doppler factors are derived for PKS 0528+134, PKS 0537-441, 3C279, PKS 1406-074, PKS 1622-297, Q1633+382, Mkn 501, and BL Lacertae. The masses obtained are in the range of (1 -7)×107M⊙\times 10^{7}M_{\odot} and compared with that obtained with the Klein-Nishina cross section considered (Dermer & Gehrels 1995). If we considered only the Thomson cross section, the masses are in the range of 2.6×106M⊙\times 10^{6}M_{\odot} - 2×1011M⊙\times 10^{11}M_{\odot}. The masses obtained from our method are less sensitive to the flux than those obtained from Dermer & Gehrels (1995) method. The masses obtained from two flares (1991 and 1996 flares) of 3C279 are almost the same. For 3C279 and BL Lacertae, viewing angle, ξ\theta, and Lorentz factor, Γ\Gamma, are estimated from the derived Doppler factor and the measured superluminal velocity. For 3C279, ξ=10∘.9−15∘.6\theta = 10^{\circ}.9-15^{\circ}.6, Γ\Gamma = 2.4-14.4 for ή\delta = 3.37; ξ=8∘.45−9∘.7\theta = 8^{\circ}.45-9^{\circ}.7, Γ\Gamma = 2.95-11.20 for ή\delta = 4.89; For BL Lacertae, ξ=25∘−29∘.4\theta = 25^{\circ}-29^{\circ}.4, Γ\Gamma = 2.0-4.0.Comment: 5 pages, A&AS, 136, 13-18 (1999

    Direct experimental evidence of free fermion antibunching

    Full text link
    Fermion antibunching was observed on a beam of free noninteracting neutrons. A monochromatic beam of thermal neutrons was first split by a graphite single crystal, then fed to two detectors, displaying a reduced coincidence rate. The result is a fermionic complement to the Hanbury Brown and Twiss effect for photons.Comment: 4 pages, 2 figure

    Electronic states and Landau levels in graphene stacks

    Full text link
    We analyze, within a minimal model that allows analytical calculations, the electronic structure and Landau levels of graphene multi-layers with different stacking orders. We find, among other results, that electrostatic effects can induce a strongly divergent density of states in bi- and tri-layers, reminiscent of one-dimensional systems. The density of states at the surface of semi-infinite stacks, on the other hand, may vanish at low energies, or show a band of surface states, depending on the stacking order

    A SAURON look at galaxy bulges

    Full text link
    Kinematic and population studies show that bulges are generally rotationally flattened systems similar to low-luminosity ellipticals. However, observations with state-of-the-art integral field spectrographs, such as SAURON, indicate that the situation is much more complex, and allow us to investigate phenomena such as triaxiality, kinematic decoupling and population substructure, and to study their connection to current formation and evolution scenarios for bulges of early-type galaxies. We present the examples of two S0 bulges from galaxies in our sample of nearby galaxies: one that shows all the properties expected from classical bulges (NGC5866), and another case that presents kinematic features appropriate for barred disk galaxies (NGC7332).Comment: 4 pages, 3 figures, accepted for publishing in AN (refereed conf. proc. of the Euro3D Science workshop, IoA Cambridge, May 2003

    Mapping the inner regions of the polar disk galaxy NGC4650A with MUSE

    Get PDF
    [abridged] The polar disk galaxy NGC4650A was observed during the commissioning of the MUSE at the ESO VLT to obtain the first 2D map of the velocity and velocity dispersion for both stars and gas. The new MUSE data allow the analysis of the structure and kinematics towards the central regions of NGC4650A, where the two components co-exist. These regions were unexplored by the previous long-slit literature data available for this galaxy. The extended view of NGC~4650A given by the MUSE data is a galaxy made of two perpendicular disks that remain distinct and drive the kinematics right into the very centre of this object. In order to match this observed structure for NGC4650A, we constructed a multicomponent mass model made by the combined projection of two disks. By comparing the observations with the 2D kinematics derived from the model, we found that the modelled mass distribution in these two disks can, on average, account for the complex kinematics revealed by the MUSE data, also in the central regions of the galaxy where the two components coexist. This result is a strong constraint on the dynamics and formation history of this galaxy; it further supports the idea that polar disk galaxies like NGC~4650A were formed through the accretion of material that has different angular momentum.Comment: 14 pages, 10 figures; accepted for publication in Astronomy & Astrophysic

    SAURON Observations of Disks in Spheroids

    Full text link
    The panoramic integral-field spectrograph SAURON is currently being used to map the stellar kinematics, gaseous kinematics, and stellar populations of a large number of early-type galaxies and bulges. Here, we describe SAURON observations of cold stellar disks embedded in spheroids (NGC3384, NGC4459, NGC4526), we illustrate the kinematics and ionization state of large-scale gaseous disks (NGC4278, NGC7742), and we show preliminary comparisons of SAURON data with barred galaxy N-body simulations (NGC3623).Comment: 8 pages including 5 figures. To appear in Galaxies: The Third Dimension, eds. M. Rosado, L. Binnette, & L. Arias (ASP: San Francisco

    SAURON: An Innovative Look at Early-Type Galaxies

    Get PDF
    A summary of the SAURON project and its current status is presented. SAURON is a panoramic integral-field spectrograph designed to study the stellar kinematics, gaseous kinematics, and stellar populations of spheroids. Here, the sample of galaxies and its properties are described. The instrument is detailed and its capabilities illustrated through observational examples. These includes results on the structure of central stellar disks, the kinematics and ionization state of gaseous disks, and the stellar populations of galaxies with decoupled cores.Comment: 10 pages, 6 figures. To appear in "The Dynamics, Structure & History of Galaxies", eds. G. S. Da Costa & E. M. Sadler (San Francisco: ASP). Version with full resolution images available at http://www.strw.leidenuniv.nl/~dynamics/Instruments/Sauron/pub_list.htm

    Towards a new classification of early-type galaxies: an integral-field view

    Get PDF
    In this proceeding we make use of the two-dimensional stellar kinematics of a representative sample of E and S0 galaxies obtained with the SAURON integral-field spectrograph to reveal that early-type galaxies appear in two broad flavours, depending on whether they exhibit clear large-scale rotation or not. We measure the level of rotation via a new parameter LambdaR and use it as a basis for a new kinematic classification that separates early-type galaxies into slow and fast rotators. With the aid of broad-band imaging we will reinforce this finding by comparing our kinematic results to the photometric properties of these two classes.Comment: 4 pages, 2 figures, to appear in "Pathways Through an Eclectic Universe", J. H. Knappen, T. J. Mahoney, and A. Vazedekis (Eds.), ASP Conf. Ser., 200

    M32+/-1

    Get PDF
    WFPC-2 images are used to study the central structure of M31, M32, and M33. The dimmer peak, P2, of the M31 double nucleus is centered on the bulge to 0.1", implying that it is the dynamical center of M31. P2 contains a compact source discovered by King et al. (1995) at 1700 A. This source is resolved, with r_{1/2} approx0.2 pc. It dominates the nucleus at 3000 A, and is consistent with late B-early A stars. This probable cluster may consist of young stars and be an older version of the cluster of hot stars at the center of the Milky Way, or it may consist of heavier stars built up from collisions in a possible cold disk of stars orbiting P2. In M32, the central cusp rises into the HST limit with gamma approx0.5, and the central density rho_0>10^7M_sol pc^-3. The V-I and U-V color profiles are flat, and there is no sign of an inner disk, dust, or any other structure. This total lack of features seems at variance with a nominal stellar collision time of 2 X 10^10 yr, which implies that a significant fraction of the light in the central pixel should come from blue stragglers. InM33, the nucleus has an extremely steep gamma=1.49 power-law profile for 0.05"<r<0.2" that becomes shallower as the HST resolution limit is approached. The profile for r<0.04" has either a gamma approx 0.8 cusp or a small core with r_c ~<0.13 pc. The central density is rho_0 > 2 10^6M_sol pc^-3, and the implied relaxation time is only ~3 X 10^6 yr, indicating that the nucleus is highly relaxed. The accompanying short collision time of 7 X 10^9 yr predicts a central blue straggler component quantitatively consistent with the strong V-I and B-R color gradients seen with HST and from the ground.Comment: 44 pages, 22 figures (7 as separate JPEG images), submitted to The Astronomical Journal. Full postscript image available at http://www.noao.edu/noao/staff/lauer/lauer_paper
    • 

    corecore