723 research outputs found

    Pairing Correlations on t-U-J Ladders

    Full text link
    Pairing correlations on generalized t-U-J two-leg ladders are reported. We find that the pairing correlations on the usual t-U Hubbard ladder are significantly enhanced by the addition of a nearest-neighbor exchange interaction J. Likewise, these correlations are also enhanced for the t-J model when the onsite Coulomb interaction is reduced from infinity. Moreover, the pairing correlations are larger on a t-U-J ladder than on a t-Jeff ladder in which Jeff has been adjusted so that the two models have the same spin gap at half-filling. This enhancement of the pairing correlations is associated with an increase in the pair-binding energy and the pair mobility in the t-U-J model and point to the importance of the charge transfer nature of the cuprate systems

    First record of the non-native suckermouth armored catfish \u3cem\u3eHypostomus cf. niceforoi\u3c/em\u3e (Fowler 1943) (Siluriformes: Loricariidae) from Central America

    Get PDF
    We document the first record of Hypostomus cf. niceforoi in Central America. Two specimens of these suckermouth armored catfishes were collected in Lake Nicaragua (Nicaragua) and identified as H. cf. niceforoi. Hypostomus niceforoi is endemic to Andean streams of Colombia, Venezuela, Ecuador, and Peru. We hypothesize that its introduction in Central America is related to the aquarium trade, as is the case of other armored catfish species introductions

    Signatures of Spin and Charge Energy Scales in the Local Moment and Specific Heat of the Two-Dimensional Hubbard Model

    Full text link
    Local moment formation driven by the on--site repulsion UU is one of the most fundamental features in the Hubbard model. At the simplest level, the temperature dependence of the local moment is expected to have a single structure at TUT \sim U, reflecting the suppression of the double occupancy. In this paper we show new low temperature Quantum Monte Carlo data which emphasize that the local moment also has a signature at a lower energy scale which previously had been thought to characterize only the temperatures below which moments on {\it different} sites begin to correlate locally. We discuss implications of these results for the structure of the specific heat, and connections to quasiparticle resonance and pseudogap formation in the density of states.Comment: 13 pages, 19 figure

    Neutrons from multiplicity-selected La-La and Nb-Nb collisions at 400A MeV and La-La collisions at 250A MeV

    Full text link
    Triple-differential cross sections for neutrons from high-multiplicity La-La collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per nucleon were measured at several polar angles as a function of the azimuthal angle with respect to the reaction plane of the collision. The reaction plane was determined by a transverse-velocity method with the capability of identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons was extracted from the slope at mid-rapidity of the curve of the average in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the participant neutrons was observed in a direction normal to the reaction plane in the normalized momentum coordinates in the center-of-mass system. Experimental results of the neutron squeeze-out were compared with BUU calculations. The polar-angle dependence of the maximum azimuthal anisotropy ratio r(θ)r(\theta) was found to be insensitive to the mass of the colliding nuclei and the beam energy. Comparison of the observed polar-angle dependence of the maximum azimuthal anisotropy ratio r(θ)r(\theta) with BUU calculations for free neutrons revealed that r(θ)r(\theta) is insensitive also to the incompressibility modulus in the nuclear equation of state.Comment: ReVTeX, 16 pages, 17 figures. To be published in Physical Review

    Band Calculation for Ce-compounds on the basis of Dynamical Mean Field Theory

    Full text link
    The band calculation scheme for ff electron compounds is developed on the basis of the dynamical mean field theory (DMFT) and the LMTO method. The auxiliary impurity problem is solved by a method named as NCAf2f^{2}v', which includes the correct exchange process of the f1f2f^{1} \to f^{2} virtual excitation as the vertex correction to the non-crossing approximation (NCA) for the f1f0f^{1} \to f^{0} fluctuation. This method leads to the correct magnitude of the Kondo temperature, TKT_{\rm K}, and makes it possible to carry out quantitative DMFT calculation including the crystalline field (CF) and the spin-orbit (SO) splitting of the self-energy. The magnetic excitation spectra are also calculated to estimate TKT_{\rm K}. It is applied to Ce metal and CeSb at T=300 K as the first step. In Ce metal, the hybridization intensity (HI) just below the Fermi energy is reduced in the DMFT band. The photo-emission spectra (PES) have a conspicuous SO side peak, similar to that of experiments. TKT_{\rm K} is estimated to be about 70 K in γ\gamma-Ce, while to be about 1700 K in α\alpha-Ce. In CeSb, the double-peak-like structure of PES is reproduced. In addition, TKT_{\rm K} which is not so low is obtained because HI is enhanced just at the Fermi energy in the DMFT band.Comment: 30pages, 18 figure

    High-Pressure Amorphous Nitrogen

    Full text link
    The phase diagram and stability limits of diatomic solid nitrogen have been explored in a wide pressure--temperature range by several optical spectroscopic techniques. A newly characterized narrow-gap semiconducting phase η\eta has been found to exist in a range of 80--270 GPa and 10--510 K. The vibrational and optical properties of the η\eta phase produced under these conditions indicate that it is largely amorphous and back transforms to a new molecular phase. The band gap of the η\eta phase is found to decrease with pressure indicating possible metallization by band overlap above 280 GPa.Comment: 5 pages, 4 figure

    Is mindfulness Buddhist? (and why it matters).

    Get PDF
    Modern exponents of mindfulness meditation promote the therapeutic effects of "bare attention"--a sort of non-judgmental, non-discursive attending to the moment-to-moment flow of consciousness. This approach to Buddhist meditation can be traced to Burmese Buddhist reform movements of the first half of the 20th century, and is arguably at odds with more traditional Theravāda Buddhist doctrine and meditative practices. But the cultivation of present-centered awareness is not without precedent in Buddhist history; similar innovations arose in medieval Chinese Zen (Chan) and Tibetan Dzogchen. These movements have several things in common. In each case the reforms were, in part, attempts to render Buddhist practice and insight accessible to laypersons unfamiliar with Buddhist philosophy and/or unwilling to adopt a renunciatory lifestyle. In addition, these movements all promised astonishingly quick results. And finally, the innovations in practice were met with suspicion and criticism from traditional Buddhist quarters. Those interested in the therapeutic effects of mindfulness and bare attention are often not aware of the existence, much less the content, of the controversies surrounding these practices in Asian Buddhist history

    Quantum Monte Carlo Study of Hole Binding and Pairing Correlations in the Three-Band Hubbard Model

    Full text link
    We simulated the 3-band Hubbard model using the Constrained Path Monte Carlo (CPMC) method in search for a possible superconducting ground state. The CPMC is a ground state method which is free of the exponential scaling of computing time with system size. We calculated the binding energy of a pair of holes for systems up to 6×46 \times 4 unit cells. We also studied the pairing correlation functions versus distance for both the d-wave and extended s-wave channels in systems up to 6×66 \times 6. We found that holes bind for a wide range of parameters and that the binding increased as the system size is increased. However, the pairing correlation functions decay quickly with distance. For the extended s channel, we found that as the Coulomb interaction UdU_d on the Cu sites is increased, the long-range part of the correlation functions is suppressed and fluctuates around zero. For the dx2y2d_{x^2 - y^2} channel, we found that the correlations decay rapidly with distance towards a small positive value. However, this value becomes smaller as the interaction UdU_d or the system size is increased.Comment: 21 pages, 13 Postscript figures, Submitted to Phys. Rev.
    corecore