2,511 research outputs found

    Optical Signatures of Spin-Orbit Interaction Effects in a Parabolic Quantum Dot

    Full text link
    We demonstrate here that the dipole-allowed optical absorption spectrum of a parabolic quantum dot subjected to an external magnetic field reflects the inter-electron interaction effects when the spin-orbit interaction is also taken into account. We have investigated the energy spectra and the dipole-allowed transition energies for up to four interacting electrons parabolically confined, and have uncovered several novel features in those spectra that are solely due to the SO interaction.Comment: 4 pages, 3 figure

    Spin-polarized electron transport in ferromagnet/semiconductor heterostructures: Unification of ballistic and diffusive transport

    Full text link
    A theory of spin-polarized electron transport in ferromagnet/semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductor structures, is developed. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. A key element of the unified description of transport inside a (nondegenerate) semiconductor is the thermoballistic current consisting of electrons which move ballistically in the electric field arising from internal and external electrostatic potentials, and which are thermalized at randomly distributed equilibration points. The ballistic component in the unified description gives rise to discontinuities in the chemical potential at the boundaries of the semiconductor, which are related to the Sharvin interface conductance. By allowing spin relaxation to occur during the ballistic motion between the equilibration points, a thermoballistic spin-polarized current and density are constructed in terms of a spin transport function. An integral equation for this function is derived for arbitrary values of the momentum and spin relaxation lengths. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the standard spin drift-diffusion equation. The spin polarization in ferromagnet/semiconductor heterostructures is obtained by invoking continuity of the current spin polarization and matching the spin-resolved chemical potentials on the ferromagnet sides of the interfaces. Allowance is made for spin-selective interface resistances. Examples are considered which illustrate the effects of transport mechanism and electric field.Comment: 23 pages, 8 figures, REVTEX 4; minor corrections introduced; to appear in Phys. Rev.

    Is genomic diversity a useful proxy for census population size? Evidence from a species‐rich community of desert lizards

    Full text link
    Species abundance data are critical for testing ecological theory, but obtaining accurate empirical estimates for many taxa is challenging. Proxies for species abundance can help researchers circumvent time and cost constraints that are prohibitive for long‐term sampling. Under simple demographic models, genetic diversity is expected to correlate with census size, such that genome‐wide heterozygosity may provide a surrogate measure of species abundance. We tested whether nucleotide diversity is correlated with long‐term estimates of abundance, occupancy and degree of ecological specialization in a diverse lizard community from arid Australia. Using targeted sequence capture, we obtained estimates of genomic diversity from 30 species of lizards, recovering an average of 5,066 loci covering 3.6 Mb of DNA sequence per individual. We compared measures of individual heterozygosity to a metric of habitat specialization to investigate whether ecological preference exerts a measurable effect on genetic diversity. We find that heterozygosity is significantly correlated with species abundance and occupancy, but not habitat specialization. Demonstrating the power of genomic sampling, the correlation between heterozygosity and abundance/occupancy emerged from considering just one or two individuals per species. However, genetic diversity does no better at predicting abundance than a single day of traditional sampling in this community. We conclude that genetic diversity is a useful proxy for regional‐scale species abundance and occupancy, but a large amount of unexplained variation in heterozygosity suggests additional constraints or a failure of ecological sampling to adequately capture variation in true population size.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149326/1/mec15042_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149326/2/mec15042.pd

    Imaging stray magnetic field of individual ferromagnetic nanotubes

    Get PDF
    We use a scanning nanometer-scale superconducting quantum interference device to map the stray magnetic field produced by individual ferromagnetic nanotubes (FNTs) as a function of applied magnetic field. The images are taken as each FNT is led through magnetic reversal and are compared with micromagnetic simulations, which correspond to specific magnetization configurations. In magnetic fields applied perpendicular to the FNT long axis, their magnetization appears to reverse through vortex states, i.e.\ configurations with vortex end domains or -- in the case of a sufficiently short FNT -- with a single global vortex. Geometrical imperfections in the samples and the resulting distortion of idealized mangetization configurations influence the measured stray-field patterns.Comment: 14 pages, 4 figure

    Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides

    Full text link
    Ballistic spin transport through waveguides, with symmetric or asymmetric double stubs attached to them periodically, is studied systematically in the presence of a weak spin-orbit coupling that makes the electrons precess. By an appropriate choice of the waveguide length and of the stub parameters injected spin-polarized electrons can be blocked completely and the transmission shows a periodic and nearly square-type behavior, with values 1 and 0, with wide gaps when only one mode is allowed to propagate in the waveguide. A similar behavior is possible for a certain range of the stub parameters even when two-modes can propagate in the waveguide and the conductance is doubled. Such a structure is a good candidate for establishing a realistic spin transistor. A further modulation of the spin current can be achieved by inserting defects in a finite-number stub superlattice. Finite-temperature effects on the spin conductance are also considered.Comment: 19 pages, 8 figure

    Magnetization reversal of an individual exchange biased permalloy nanotube

    Get PDF
    We investigate the magnetization reversal mechanism in an individual permalloy (Py) nanotube (NT) using a hybrid magnetometer consisting of a nanometer-scale SQUID (nanoSQUID) and a cantilever torque sensor. The Py NT is affixed to the tip of a Si cantilever and positioned in order to optimally couple its stray flux into a Nb nanoSQUID. We are thus able to measure both the NT's volume magnetization by dynamic cantilever magnetometry and its stray flux using the nanoSQUID. We observe a training effect and temperature dependence in the magnetic hysteresis, suggesting an exchange bias. We find a low blocking temperature TB=18±2T_B = 18 \pm 2 K, indicating the presence of a thin antiferromagnetic native oxide, as confirmed by X-ray absorption spectroscopy on similar samples. Furthermore, we measure changes in the shape of the magnetic hysteresis as a function of temperature and increased training. These observations show that the presence of a thin exchange-coupled native oxide modifies the magnetization reversal process at low temperatures. Complementary information obtained via cantilever and nanoSQUID magnetometry allows us to conclude that, in the absence of exchange coupling, this reversal process is nucleated at the NT's ends and propagates along its length as predicted by theory.Comment: 8 pages, 4 figure

    The Rashba Hamiltonian and electron transport

    Full text link
    The Rashba Hamiltonian describes the splitting of the conduction band as a result of spin-orbit coupling in the presence of an external field and is commonly used to model the electronic structure of confined narrow-gap semiconductors. Due to the mixing of spin states some care has to be exercised in the calculation of transport properties. We derive the velocity operator for the Rashba-split conduction band and demonstrate that the transmission of an interface between a ferromagnet and a Rashba-split semiconductor does not depend on the magnetization direction, in contrast with previous assertions in the literature.Comment: one tex file, two figures; paper to appear in this form in PRB (RC

    Energy levels and magneto-optical transitions in parabolic quantum dots with spin-orbit coupling

    Full text link
    We report on the electronic properties of few interacting electrons confined in a parabolic quantum dot based on a theoretical approach developed to investigate the influence of Bychkov-Rashba spin-orbit (SO) interaction on such a system. We note that the spin-orbit coupling profoundly influences the energy spectrum of interacting electrons in a quantum dot. Here we present accurate results for the energy levels and optical-absorption spectra for parabolic quantum dots containing upto four interacting electrons, in the presence of spin-orbit coupling and under the influence of an externally applied, perpendicular magnetic field. We have described in detail about a very accurate numerical scheme to evaluate these quantities. We have evaluated the effects of SO coupling on the Fock-Darwin spectra for quantum dots made out of three different semiconductor systems, InAs, InSb, and GaAs.Comment: expanded version of cond-mat/0501642 to be published in Phys. Rev. Let

    Magnetization in short-period mesoscopic electron systems

    Full text link
    We calculate the magnetization of the two-dimensional electron gas in a short-period lateral superlattice, with the Coulomb interaction included in Hartree and Hartree-Fock approximations. We compare the results for a finite, mesoscopic system modulated by a periodic potential, with the results for the infinite periodic system. In addition to the expected strong exchange effects, the size of the system, the type and the strength of the lateral modulation leave their fingerprints on the magnetization.Comment: RevTeX4, 10 pages with 14 included postscript figures To be published in PRB. Replaced to repair figure

    Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires

    Full text link
    We present numerical calculations of the ballistic spin-transport properties of quasi-one-dimensional wires in the presence of the spin-orbit (Rashba) interaction. A tight-binding analog of the Rashba Hamiltonian which models the Rashba effect is used. By varying the robustness of the Rashba coupling and the width of the wire, weak and strong coupling regimes are identified. Perfect electron spin-modulation is found for the former regime, regardless of the incident Fermi energy and mode number. In the latter however, the spin-conductance has a strong energy dependence due to a nontrivial subband intermixing induced by the strong Rashba coupling. This would imply a strong suppression of the spin-modulation at higher temperatures and source-drain voltages. The results may be of relevance for the implementation of quasi-one-dimensional spin transistor devices.Comment: 19 pages (incl. 9 figures). To be published in PR
    • 

    corecore