87 research outputs found

    Robust on-line adaptive footplant detection and enforcement for locomotion

    Get PDF
    A common problem in virtual character computer animation concerns the preservation of the basic foot-floor constraint (or footplant), consisting in detecting it before enforcing it. This paper describes a system capable of generating motion while continuously preserving the footplants for a realtime, dynamically evolving context. This system introduces a constraint detection method that improves classical techniques by adaptively selecting threshold values according to motion type and quality. The footplants are then enforced using a numerical inverse kinematics solver. As opposed to previous approaches, we define the footplant by attaching to it two effectors whose position at the beginning of the constraint can be modified, in order to place the foot on the ground, for example. However, the corrected posture at the constraint beginning is needed before it starts to ensure smoothness between the unconstrained and constrained states. We, therefore, present a new approach based on motion anticipation, which computes animation postures in advance, according to time-evolving motion parameters, such as locomotion speed and type. We illustrate our on-line approach with continuously modified locomotion patterns, and demonstrate its ability to correct motion artifacts, such as foot sliding, to change the constraint position and to modify from a straight to a curved walk motio

    Microstructure of near-infrared pulsed laser sintered titanium samples

    Get PDF
    The microstructure and material properties of near-infrared pulsed laser sintered titanium have been investigated. Several analyses of the selectively laser sintered titanium powder, using characterisation techniques such as compressive strength, microhardness, energy-dispersive X-ray microanalysis, X-ray diffractometry and scanning electron microscopy analysis, allowed the metallurgical description of the sintering process. Only partial melting in a narrow surface layer took place, whereas most of the material stayed clearly below the melting temperatur

    On the role of trust types and levels on inventory replenishment decision

    Get PDF
    Using a participatory simulation platform, this paper investigates the inventory replenishment decisions made under different trust categories. Depending on the type of trust (trust in supplier versus trust in customer) and level of trust (high versus low), each decision is categorized and analyzed. We investigate how the inventory manager`s ordering behavior varies regarding their type and level of trust. This study provides evidence for the role of trust in inventory replenishment decision. The findings on the influence of trust on inventory decision indicators provide a new perspective in respect to the supply chain management literature, which generally postulates a positive influence of trust on supply chain stability and uncertainty reduction

    Style-based Motion Synthesis

    Get PDF
    Representing motions as linear sums of principal components has become a widely accepted animation technique. While powerful, the simplest version of this approach is not particularly well suited to modeling the specific style of an individual whose motion had not yet been recorded when building the database: it would take an expert to adjust the PCA weights to obtain a motion style that is indistinguishable from his. Consequently, when realism is required, the current practice is to perform a full motion capture session each time a new person must be considered. In this paper, we extend the PCA approach so that this requirement can be drastically reduced: for whole classes of cyclic and noncyclic motions such as walking, running or jumping, it is enough to observe the newcomer moving only once at a particular speed or jumping a particular distance using either an optical motion capture system or a simple pair of synchronized video cameras. This one observation is used to compute a set of principal component weights that best approximates the motion and to extrapolate in real-time realistic animations of the same person walking or running at different speeds, and jumping a different distanc

    Ancient homeobox gene loss and the evolution of chordate brain and pharynx development: deductions from amphioxus gene expression

    Get PDF
    Homeobox genes encode a large superclass of transcription factors with widespread roles in animal development. Within chordates there are over 100 homeobox genes in the invertebrate cephalochordate amphioxus and over 200 in humans. Set against this general trend of increasing gene number in vertebrate evolution, some ancient homeobox genes that were present in the last common ancestor of chordates have been lost from vertebrates. Here, we describe the embryonic expression of four amphioxus descendants of these genes—AmphiNedxa, AmphiNedxb, AmphiMsxlx and AmphiNKx7. All four genes are expressed with a striking asymmetry about the left–right axis in the pharyngeal region of neurula embryos, mirroring the pronounced asymmetry of amphioxus embryogenesis. AmphiMsxlx and AmphiNKx7 are also transiently expressed in an anterior neural tube region destined to become the cerebral vesicle. These findings suggest significant rewiring of developmental gene regulatory networks occurred during chordate evolution, coincident with homeobox gene loss. We propose that loss of otherwise widely conserved genes is possible when these genes function in a confined role in development that is subsequently lost or significantly modified during evolution. In the case of these homeobox genes, we propose that this has occurred in relation to the evolution of the chordate pharynx and brain

    Conserved and divergent functions of Drosophila atonal , amphibian, and mammalian Ath5 genes

    Full text link
    Insect and vertebrate eyes differ in their formation, cellular composition, neural connectivity, and visual function. Despite this diversity, Drosophila atonal and its vertebrate Ortholog in the eye, Ath5 , each regulate determination of the first retinal neuron class—R8 photo-receptors and retinal ganglion cells (RGCs)—in their respective organisms. We have performed a cross-species functional comparison of these genes. In ato 1 mutant Drosophila , ectopic Xenopus Ath5 ( Xath5 ) rescues photoreceptor cell development comparably with atonal . In contrast, mouse Ath5 ( Math5 ) induces formation of very few ommatidia, and most of these lack R8 cells. In the developing frog eye, ectopic atonal , like Xath5 , promotes the differentiation RGCs. Despite strong conservation of atonal , Xath5 , and Math5 structure and shared function, other factors must contribute to the species specificity of retinal neuron determination. These observations suggest that the atonal family may occupy a position in a gene hierarchy where differences in gene regulation or function can be correlated with evolutionary diversity of eye development.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72909/1/j.1525-142X.2003.03058.x.pd
    • 

    corecore