34 research outputs found

    Effect of roflumilast on inflammatory cells in the lungs of cigarette smoke-exposed mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We reported that roflumilast, a phosphodiesterase 4 inhibitor, given orally at 5 mg/kg to mice prevented the development of emphysema in a chronic model of cigarette smoke exposure, while at 1 mg/kg was ineffective. Here we investigated the effects of roflumilast on the volume density (V<sub>V</sub>) of the inflammatory cells present in the lungs after chronic cigarette smoke exposure.</p> <p>Methods</p> <p>Slides were obtained from blocks of the previous study and V<sub>V </sub>was assessed immunohistochemically and by point counting using a grid with 48 points, a 20× objective and a computer screen for a final magnification of 580×. Neutrophils were marked with myeloperoxidase antibody, macrophages with Mac-3, dendritic cells with fascin, B-lymphocytes with B220, CD4+ T-cells with CD4+ antibody, and CD8+T-cells with CD8-α. The significance of the differences was calculated using one-way analysis of variance.</p> <p>Results</p> <p>Chronic smoke exposure increased neutrophil V<sub>V </sub>by 97%, macrophage by 107%, dendritic cell by 217%, B-lymphocyte by 436%, CD4+ by 524%, and CD8+ by 417%. The higher dose of roflumilast prevented the increase in neutrophil V<sub>V </sub>by 78%, macrophage by 82%, dendritic cell by 48%, B-lymphocyte by 100%, CD4+ by 98% and CD8+ V<sub>V </sub>by 88%. The lower dose of roflumilast did not prevent the increase in neutrophil, macrophage and B-cell V<sub>V </sub>but prevented dendritic cells by 42%, CD4+ by 55%, and CD8+ by 91%.</p> <p>Conclusion</p> <p>These results indicate (<it>i</it>) chronic exposure to cigarette smoke in mice results in a significant recruitment into the lung of inflammatory cells of both the innate and adaptive immune system; (<it>ii</it>) roflumilast at the higher dose exerts a protective effect against the recruitment of all these cells and at the lower dose against the recruitment of dendritic cells and T-lymphocytes; (<it>iii</it>) these findings underline the role of innate immunity in the development of pulmonary emphysema and (<it>iiii</it>) support previous results indicating that the inflammatory cells of the adaptive immune system do not play a central role in the development of cigarette smoke induced emphysema in mice.</p

    LXR Deficiency Confers Increased Protection against Visceral Leishmania Infection in Mice

    Get PDF
    Leishmania spp. are protozoan single-cell parasites that are transmitted to humans by the bite of an infected sand fly, and can cause a wide spectrum of disease, ranging from self-healing skin lesions to potentially fatal systemic infections. Certain species of Leishmania that cause visceral (systemic) disease are a source of significant mortality worldwide. Here, we use a mouse model of visceral Leishmania infection to investigate the effect of a host gene called LXR. The LXRs have demonstrated important functions in both cholesterol regulation and inflammation. These processes, in turn, are closely related to lipid metabolism and the development of atherosclerosis. LXRs have also previously been shown to be involved in protection against other intracellular pathogens that infect macrophages, including certain bacteria. We demonstrate here that LXR is involved in susceptibility to Leishmania, as animals deficient in the LXR gene are much more resistant to infection with the parasite. We also demonstrate that macrophages lacking LXR kill parasites more readily, and make higher levels of nitric oxide (an antimicrobial mediator) and IL-1β (an inflammatory cytokine) in response to Leishmania infection. These results could have important implications in designing therapeutics against this deadly pathogen, as well as other intracellular microbial pathogens
    corecore