16 research outputs found

    Resuscitation of Severe Uncontrolled Hemorrhage 7.5% Sodium Chloride/6% Dextran 70 vs 0.9% Sodium Chloride

    Full text link
    Objectives: Resuscitation studies of hypertonic saline using controlled and uncontrolled hemorrhage models yield conflicting results with regard to efficacy. These disparate results reflect the use of models and resuscitation regimens that are not comparable between studies. This study evaluated the effects of comparable and clinically relevant resuscitation regimens of 7.5% sodium chloride/6% dextran 70 (HSD) and 0.9% sodium chloride (NS) in a near-fatal uncontrolled hemorrhage model. Methods: Thirty-six swine (14.2 to 21.4 kg) with 4-mm aortic tears were bled to a pulse pressure of 5 mm Hg (40-45 mL/kg). The animals were resuscitated with either NS or HSD administered in volumes that provided equivalent sodium loads at similar rates. Group II (n = 12) was resuscitated with 80 mL/kg of NS at a rate of 4 mL/kg/min. Group III (n = 12) received 9.6 mL/kg of HSD at a rate of 0.48 mL/kg/min. In both groups, crystalloid resuscitation was followed by shed blood infusion (30 mL/kg) at a rate of 2 mL/kg/min. Group I (controls; n = 12) were not resuscitated. Results: One-hour mortality was significantly greater in group I (92%) as compared with group II (33%) and group III (33%) (Fisher's exact test; p = 0.004). Intraperitoneal hemorrhage was significantly greater in group II (34 ± 20 mL/kg) and group III (31 ± 13 mL/kg) as compared with group I (5 ± 2 mL/kg) (ANOVA; p < 0.05). There was no significant difference in hemodynamic parameters between groups II and III. Conclusion: In this model of severe uncontrolled hemorrhage, resuscitation with HSD or NS, administered in volumes that provided equivalent sodium loads at similar rates, had similar effects on mortality, hemodynamic parameters, and hemorrhage from the injury site.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73625/1/j.1553-2712.2000.tb02060.x.pd

    A genomic catalog of Earth’s microbiomes

    Get PDF
    The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes

    Effect of the nature of the nucleophile and solvent on an SNAr reaction

    No full text
    The reaction of 2,4-dinitrobenzenesulfonyl chloride toward propylamine was kinetically evaluated in 19 organic solvents and 10 ionic liquids as reaction media. This study was compared with a previous study to experimentally show that solvent effects and the nature of the reacting pair drastically affect the reaction rate and the reaction mechanism. While the reaction of the reference electrophile 2,4-dinitrobenzenesulfonyl chloride with piperidine is favored in polar solvents with the ability to donate or accept hydrogen bonds, the reaction with propylamine is favored in solvents with the ability to accept hydrogen bonds.Fondecyt 11140172 1150759 project ICM-MINECON - Fondo de Innovacion para La Competitividad Del Ministerio de Economia, Fomento y Turismo, Chile RC-130006 - CILIS Instituto de Ciencias e Innovacion en Medicina (ICIM-CAS UDD) 312006

    Seroconversion and Abundance of IgG Antibodies against S1-RBD of SARS-CoV-2 and Neutralizing Activity in the Chilean Population

    No full text
    COVID-19 is a pandemic caused by SARS-CoV-2. In Chile, half a million people have been infected and more than 16,000 have died from COVID-19. As part of the clinical trial NCT04384588, we quantified IgG against S1-RBD of SARS-CoV-2 (anti-RBD) in recovered people in Santiago and evaluated their suitability as COVID-19 convalescent plasma donors. ELISA and a luminescent SARS-CoV-2 pseudotype were used for IgG and neutralizing antibody quantification. 72.9% of the convalescent population (468 of 639) showed seroconversion (5-55 μg/mL anti-RBD IgG) and were suitable candidates for plasma donation. Analysis by gender, age, and days after symptom offset did not show significant differences. Neutralizing activity correlated with an increased concentration of anti-RBD IgG (p<0.0001) and showed a high variability between donors. We confirmed that the majority of the Chilean patients have developed anti-SARS-CoV-2 antibodies. The quantification of anti-RBD IgG in convalescent plasma donors is necessary to increase the detection of neutralizing antibodies

    Fighting Fire with Fire: Phage Potential for the Treatment of <i>E. coli</i> O157 Infection

    No full text
    Hemolytic&#8315;uremic syndrome is a life-threating disease most often associated with Shiga toxin-producing microorganisms like Escherichia coli (STEC), including E. coli O157:H7. Shiga toxin is encoded by resident prophages present within this bacterium, and both its production and release depend on the induction of Shiga toxin-encoding prophages. Consequently, treatment of STEC infections tend to be largely supportive rather than antibacterial, in part due to concerns about exacerbating such prophage induction. Here we explore STEC O157:H7 prophage induction in vitro as it pertains to phage therapy&#8212;the application of bacteriophages as antibacterial agents to treat bacterial infections&#8212;to curtail prophage induction events, while also reducing STEC O157:H7 presence. We observed that cultures treated with strictly lytic phages, despite being lysed, produce substantially fewer Shiga toxin-encoding temperate-phage virions than untreated STEC controls. We therefore suggest that phage therapy could have utility as a prophylactic treatment of individuals suspected of having been recently exposed to STEC, especially if prophage induction and by extension Shiga toxin production is not exacerbated
    corecore