8,110 research outputs found
Scheduling strategies for LTE uplink with flow behaviour analysis
Long Term Evolution (LTE) is a cellular technology developed to support\ud
diversity of data traffic at potentially high rates. It is foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key\ud
mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and time dimension. In this paper we present a performance comparison of two distinct scheduling schemes for LTE uplink (fair fixed assignment and fair work-conserving) taking into account both packet level characteristics and flow level dynamics due to the random user behaviour. For that purpose, we apply a combined analytical/simulation approach which enables fast evaluation of performance measures such as mean flow transfer times manifesting the impact of resource allocation strategies. The results show that the resource allocation strategy has a crucial impact on performance and that some trends are observed only if flow level dynamics are considered
Out of Equilibrium Solutions in the -Hamiltonian Mean Field model
Out of equilibrium magnetised solutions of the -Hamiltonian Mean Field
(-HMF) model are build using an ensemble of integrable uncoupled pendula.
Using these solutions we display an out-of equilibrium phase transition using a
specific reduced set of the magnetised solutions
Where the <i>really</i> hard problems Aren’t
Not all problem instances in combinatorial optimization are equally hard. One famous study "Where the Really Hard Problems Are" shows that for three decision problems and one optimization problem, computational costs can vary dramatically for equally sized instances. Moreover, runtimes could be predicted from an "order parameter", which is a property of the problem instance itself. For the only optimization problem in the study, the asymmetric traveling salesman problem (ATSP), the proposed order parameter was the standard deviation in the probability distribution used for generating distance matrices. For greater standard deviations, most randomly generated instances turned out to be easily solved to optimality, whereas smaller standard deviations produced harder instances. In this replication study, we show these findings can be contested. Most likely, the difference in instance hardness stems from a roundoff error that was possibly overlooked. This gives rise to a sudden emergence of minimum-cost tours, a feature that is readily exploited by most branch and bound algorithms. This new contradiction renders the earlier proposed order parameter unsuitable and changes the perspective on the fundamentals of ATSP instance hardness for this kind of algorithm
Photometric variability in the old open cluster M 67. II. General Survey
We use differential CCD photometry to search for variability in BVI among 990
stars projected in and around the old open cluster M 67. In a previous paper we
reported results for 22 cluster members that are optical counterparts to X-ray
sources; this study focuses on the other stars in our observations. A variety
of sampling rates were employed, allowing variability on time scales ranging
from \sim 0.3 hours to \sim 20 days to be studied. Among the brightest sources
studied, detection of variability as small as sigma approx 10 mmag is achieved
(with > 3 sigma confidence); for the typical star observed, sensitivity to
variability at levels sigma approx 20 mmag is achieved. The study is unbiased
for stars with 12.5 < B < 18.5, 12.5 < V < 18.5, and 12 < I < 18 within a
radius of about 10 arcmin from the cluster centre. In addition, stars with 10 <
BVI < 12.5 were monitored in a few small regions in the cluster. We present
photometry for all 990 sources studied, and report the variability
characteristics of those stars found to be variable at a statistically
significant level. Among the variables, we highlight several sources that merit
future study, including stars located on the cluster binary sequence, stars on
the giant branch, blue stragglers, and a newly discovered W UMa system.Comment: 12 pages, including 6 figures and 5 tables. Tables 1 and 3 only
available in electronic version of paper. Accepted by A&
Gravitational diffraction radiation
We show that if the visible universe is a membrane embedded in a
higher-dimensional space, particles in uniform motion radiate gravitational
waves because of spacetime lumpiness. This phenomenon is analogous to the
electromagnetic diffraction radiation of a charge moving near to a metallic
grating. In the gravitational case, the role of the metallic grating is played
by the inhomogeneities of the extra-dimensional space, such as a hidden brane.
We derive a general formula for gravitational diffraction radiation and apply
it to a higher-dimensional scenario with flat compact extra dimensions.
Gravitational diffraction radiation may carry away a significant portion of the
particle's initial energy. This allows to set stringent limits on the scale of
brane perturbations. Physical effects of gravitational diffraction radiation
are briefly discussed.Comment: 5 pages, 2 figures, RevTeX4. v2: References added. Version to appear
in Phys. Rev.
A key role for stimulus-specific updating of the sensory cortices in the learning of stimulus-reward associations
Successful adaptive behavior requires the learning of associations between stimulus-specific choices and rewarding outcomes. Most research on the mechanisms underlying such processes has focused on subcortical reward-processing regions, in conjunction with frontal circuits. Given the extensive stimulus-specific coding in the sensory cortices, we hypothesized they would play a key role in the learning of stimulus-specific reward associations. We recorded electrical brain activity (EEG) during a learning-based, decision-making, gambling task where, on each trial, participants chose between a face and a house and then received feedback (gain or loss). Within each 20-trial set, either faces or houses were more likely to predict a gain. Results showed that early feedback processing (~200-1200ms) was independent of the choice made. In contrast, later feedback processing (~1400-1800ms) was stimulus-specific, reflected by decreased alpha power (reflecting increased cortical activity) over face-selective regions. For winning-versus-losing after a face choice, but not after a house choice. Finally, as the reward association was learned in a set, there was increasingly stronger attentional bias towards the more likely winning stimulus, reflected by increasing attentional-orienting-related brain activity and increasing likelihood of choosing that stimulus. These results delineate the processes underlying the updating of stimulus-reward associations during feedback-guided learning, which then guides future attentional allocation and decision making
- …