6,309 research outputs found
An Infrared Color-Magnitude Relationship
We have investigated a sample of dusty supergiants and Mira variables and have found a roughly linear relationship between the absolute magnitude at 12 mum and the [l2]-[25] color. Both samples follow the same infrared color-magnitude relationship, whic
Stringent Phenomenological Investigation into Heterotic String Optical Unification
For the weakly coupled heterotic string (WCHS) there is a well-known factor
of twenty conflict between the minimum string coupling unification scale,
Lambda_H ~5x10^(17) GeV, and the projected MSSM unification scale, Lambda_U ~
2.5x10^(16) GeV, assuming an intermediate scale desert (ISD). Renormalization
effects of intermediate scale MSSM-charged exotics (ISME) (endemic to
quasi-realistic string models) can resolve this issue, pushing the MSSM scale
up to the string scale. However, for a generic string model, this implies that
the projected Lambda_U unification under ISD is accidental. If the true
unification scale is 5.0x10^(17) GeV, is it possible that illusionary
unification at 2.5x10^(17) GeV in the ISD scenario is not accidental? If it is
not, then under what conditions would the assumption of ISME in a WCHS model
imply apparent unification at Lambda_U when ISD is falsely assumed? Geidt's
"optical unification" suggests that Lambda_U is not accidental, by offering a
mechanism whereby a generic MSSM scale Lambda_U < Lambda_H is guaranteed. A
WCHS model was constructed that offers the possibility of optical unification,
depending on the availability of anomaly-cancelling flat directions meeting
certain requirements. This paper reports on the systematic investigation of the
optical unification properties of the set of stringent flat directions of this
model. Stringent flat directions can be guaranteed to be F-flat to all finite
order (or to at least a given finite order consistent with electroweak scale
supersymmetry breaking) and can be viewed as the likely roots of more general
flat directions. Analysis of the phenomenology of stringent flat directions
gives an indication of the remaining optical unification phenomenology that
must be garnered by flat directions developed from them.Comment: standard latex, 18 pages of tex
Force and energy dissipation variations in non-contact atomic force spectroscopy on composite carbon nanotube systems
UHV dynamic force and energy dissipation spectroscopy in non-contact atomic
force microscopy were used to probe specific interactions with composite
systems formed by encapsulating inorganic compounds inside single-walled carbon
nanotubes. It is found that forces due to nano-scale van der Waals interaction
can be made to decrease by combining an Ag core and a carbon nanotube shell in
the Ag@SWNT system. This specific behaviour was attributed to a significantly
different effective dielectric function compared to the individual
constituents, evaluated using a simple core-shell optical model. Energy
dissipation measurements showed that by filling dissipation increases,
explained here by softening of C-C bonds resulting in a more deformable
nanotube cage. Thus, filled and unfilled nanotubes can be discriminated based
on force and dissipation measurements. These findings have two different
implications for potential applications: tuning the effective optical
properties and tuning the interaction force for molecular absorption by
appropriately choosing the filling with respect to the nanotube.Comment: 22 pages, 6 figure
Paramagnetic Resonance Absorption in Some Organic Biradicals
Four compounds of the form 4,4âČâpolymethylenebistriphenylmethyl, one compound of the form (1,4âphenylene)bisdiarylmethyl, three compounds of the form (4,4âČâbiphenylene)bisdiarylmethyl, and one compound, 4,4âČâoxybistriphenylmethyl have been shown to possess unpaired electrons by paramagnetic resonance absorption. The resonance spectra of 0.01 M solutions of these compounds in benzene exhibit a hyperfine structure arising from a spherically symmetrical contribution of the magnetic dipole interaction between the unpaired electron and the nuclear magnetic moments of the hydrogen atoms. The gâfactors for the compounds investigated in the first three classes were found to be 2.0025±0.0004 and 2.0031±0.0004 for the last compound. Such a close approach of the gâfactor to the free electron value plus the sharpness of the hyperfine structure lines indicates that the anisotropic contributions of the spinâorbit interaction, which would normally lift the degeneracy of the triplet state, are averaged out by the tumbling of the molecules.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70965/2/JCPSA6-25-4-697-1.pd
The [Ne III]/[Ne II] line ratio in NGC 253
We present results of the mapping of the nucleus of the starburst galaxy NGC 253 and its immediate surroundings using the Infrared Spectrograph on board the Spitzer Space Telescope. The map is centered on the nucleus of the galaxy and spans the inner 800 Ă 688 pc^2. We perform a brief investigation of the implications of these measurement on the properties of the star formation in this region using theories developed to explain the deficiency of massive stars in starbursts
- âŠ