5,649 research outputs found

    N=(1,1) super Yang--Mills theory in 1+1 dimensions at finite temperature

    Full text link
    We present a formulation of N=(1,1) super Yang-Mills theory in 1+1 dimensions at finite temperature. The partition function is constructed by finding a numerical approximation to the entire spectrum. We solve numerically for the spectrum using Supersymmetric Discrete Light-Cone Quantization (SDLCQ) in the large-N_c approximation and calculate the density of states. We find that the density of states grows exponentially and the theory has a Hagedorn temperature, which we extract. We find that the Hagedorn temperature at infinite resolution is slightly less than one in units of (g^(2) N_c/pi)^(1/2). We use the density of states to also calculate a standard set of thermodynamic functions below the Hagedorn temperature. In this temperature range, we find that the thermodynamics is dominated by the massless states of the theory.Comment: 16 pages, 8 eps figures, LaTe

    D^+ \to K^- \p^+ \p^+ : the low-energy sector

    Full text link
    An effective SU(3)×SU(3)SU(3)\times SU(3) chiral lagrangian, which includes scalar resonances, is used to describe the process D^+ \rar K^- \p^+ \p^+ at low-energies. Our main result is a set of five SS-wave amplitudes, suited to be used in analyses of production data.Comment: Talk given at SCADRON 70 - Workshop on Scalar Mesons and Related Topics - Lisbon - February 200

    Beam profile measurements at 40 MHz in the PS to SPS transfer channel

    Get PDF
    Bunch to bunch beam profile measurements provide a valuable tool to control the injection lines to the SPS. A fast profile monitor based on a 2.5 ”m Mylar coated with Aluminium Optical Transition Radiation (OTR) radiator, has been developed, installed and tested in the transfer line between the PS and SPS. The OTR beam image is focused onto a fast Linear Multianode Photo Multiplier Tube and the associated electronics sample and store profiles every 25 ns. The paper describes the detector design, the electronic processing, and presents the results of different measurements made with bunches of 109-1011 protons at 26 GeV, and bunches of 106 Pb82 ions at 5.11 GeV/u

    The Supersymmetric Ward-Takahashi Identity in 1-Loop Lattice Perturbation Theory. I. General Procedure

    Full text link
    The one-loop corrections to the lattice supersymmetric Ward-Takahashi identity (WTi) are investigated in the off-shell regime. In the Wilson formulation of the N=1 supersymmetric Yang-Mills (SYM) theory, supersymmetry (SUSY) is broken by the lattice, by the Wilson term and is softly broken by the presence of the gluino mass. However, the renormalization of the supercurrent can be realized in a scheme that restores the continuum supersymmetric WTi (once the on-shell condition is imposed). The general procedure used to calculate the renormalization constants and mixing coefficients for the local supercurrent is presented. The supercurrent not only mixes with the gauge invariant operator TÎŒT_\mu. An extra mixing with other operators coming from the WTi appears. This extra mixing survives in the continuum limit in the off-shell regime and cancels out when the on-shell condition is imposed and the renormalized gluino mass is set to zero. Comparison with numerical results are also presented.Comment: 16 pages, 2 figures. Typos error correcte

    Nuclear magnetic resonance measurements reveal the origin of the Debye process in monohydroxy alcohols

    Full text link
    Monohydroxy alcohols show a structural relaxation and at longer time scales a Debye-type dielectric peak. From spin-lattice relaxation experiments using different nuclear probes an intermediate, slower-than-structural dynamics is identified for n-butanol. Based on these findings and on diffusion measurements, a model of self-restructuring, transient chains is proposed. The model is demonstrated to explain consistently the so far puzzling observations made for this class of hydrogen-bonded glass forming liquids.Comment: 4 pages, 4 figure

    Sonoluminescing air bubbles rectify argon

    Get PDF
    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent reaction to water soluble gases implies that strongly forced air bubbles eventually consist of pure argon. Thus it is the partial argon (or any other inert gas) pressure which is relevant for stability. The theory provides quantitative explanations for many aspects of SBSL.Comment: 4 page

    To dd, or not to dd: Recent developments and comparisons of regularization schemes

    Get PDF
    We give an introduction to several regularization schemes that deal with ultraviolet and infrared singularities appearing in higher-order computations in quantum field theories. Comparing the computation of simple quantities in the various schemes, we point out similarities and differences between them.Comment: 61 pages, 12 figures; version sent to EPJC, references update
    • 

    corecore