369 research outputs found
Applications of atomic ensembles in distributed quantum computing
Thesis chapter. The fragility of quantum information is a fundamental constraint faced by anyone trying to build a quantum computer. A truly useful and powerful quantum computer has to be a robust and scalable machine. In the case of many qubits which may interact with the environment and their neighbors, protection against decoherence becomes quite a challenging task. The scalability and decoherence issues are the main difficulties addressed by the distributed model of quantum computation. A distributed quantum computer consists of a large quantum network of distant nodes - stationary qubits which communicate via flying qubits. Quantum information can be transferred, stored, processed and retrieved in decoherence-free fashion by nodes of a quantum network realized by an atomic medium - an atomic quantum memory. Atomic quantum memories have been developed and demonstrated experimentally in recent years. With the help of linear optics and laser pulses, one is able to manipulate quantum information stored inside an atomic quantum memory by means of electromagnetically induced transparency and associated propagation phenomena. Any quantum computation or communication necessarily involves entanglement. Therefore, one must be able to entangle distant nodes of a distributed network. In this article, we focus on the probabilistic entanglement generation procedures such as well-known DLCZ protocol. We also demonstrate theoretically a scheme based on atomic ensembles and the dipole blockade mechanism for generation of inherently distributed quantum states so-called cluster states. In the protocol, atomic ensembles serve as single qubit systems. Hence, we review single-qubit operations on qubit defined as collective states of atomic ensemble. Our entangling protocol requires nearly identical single-photon sources, one ultra-cold ensemble per physical qubit, and regular photodetectors. The general entangling procedure is presented, as well as a procedure that generates in a single step Q-qubit GHZ states with success probability p(success) similar to eta(Q/2), where eta is the combined detection and source efficiency. This is signifcantly more efficient than any known robust probabilistic entangling operation. The GHZ states form the basic building block for universal cluster states, a resource for the one-way quantum computer
Conversion of neutral nitrogen-vacancy centers to negatively-charged nitrogen-vacancy centers through selective oxidation
The conversion of neutral nitrogen-vacancy centers to negatively charged
nitrogen-vacancy centers is demonstrated for centers created by ion
implantation and annealing in high-purity diamond. Conversion occurs with
surface exposure to an oxygen atmosphere at 465 C. The spectral properties of
the charge-converted centers are investigated. Charge state control of
nitrogen-vacancy centers close to the diamond surface is an important step
toward the integration of these centers into devices for quantum information
and magnetic sensing applications.Comment: 4 pages, 3 figure
On the indistinguishability of Raman photons
We provide a theoretical framework to study the effect of dephasing on the
quantum indistinguishability of single photons emitted from a coherently driven
cavity QED -system. We show that with a large excited-state detuning,
the photon indistinguishability can be drastically improved provided that the
fluctuation rate of the noise source affecting the excited state is fast
compared with the photon emission rate. In some cases a spectral filter is
required to realize this improvement, but the cost in efficiency can be made
small.Comment: 18 pages, 3 figures, final versio
Model of Thermal Wavefront Distortion in Interferometric Gravitational-Wave Detectors I: Thermal Focusing
We develop a steady-state analytical and numerical model of the optical
response of power-recycled Fabry-Perot Michelson laser gravitational-wave
detectors to thermal focusing in optical substrates. We assume that the thermal
distortions are small enough that we can represent the unperturbed intracavity
field anywhere in the detector as a linear combination of basis functions
related to the eigenmodes of one of the Fabry-Perot arm cavities, and we take
great care to preserve numerically the nearly ideal longitudinal phase
resonance conditions that would otherwise be provided by an external
servo-locking control system. We have included the effects of nonlinear thermal
focusing due to power absorption in both the substrates and coatings of the
mirrors and beamsplitter, the effects of a finite mismatch between the
curvatures of the laser wavefront and the mirror surface, and the diffraction
by the mirror aperture at each instance of reflection and transmission. We
demonstrate a detailed numerical example of this model using the MATLAB program
Melody for the initial LIGO detector in the Hermite-Gauss basis, and compare
the resulting computations of intracavity fields in two special cases with
those of a fast Fourier transform field propagation model. Additional
systematic perturbations (e.g., mirror tilt, thermoelastic surface
deformations, and other optical imperfections) can be included easily by
incorporating the appropriate operators into the transfer matrices describing
reflection and transmission for the mirrors and beamsplitter.Comment: 24 pages, 22 figures. Submitted to JOSA
Efficient optical quantum information processing
Quantum information offers the promise of being able to perform certain
communication and computation tasks that cannot be done with conventional
information technology (IT). Optical Quantum Information Processing (QIP) holds
particular appeal, since it offers the prospect of communicating and computing
with the same type of qubit. Linear optical techniques have been shown to be
scalable, but the corresponding quantum computing circuits need many auxiliary
resources. Here we present an alternative approach to optical QIP, based on the
use of weak cross-Kerr nonlinearities and homodyne measurements. We show how
this approach provides the fundamental building blocks for highly efficient
non-absorbing single photon number resolving detectors, two qubit parity
detectors, Bell state measurements and finally near deterministic control-not
(CNOT) gates. These are essential QIP devicesComment: Accepted to the Journal of optics B special issue on optical quantum
computation; References update
Applications of Coherent Population Transfer to Quantum Information Processing
We develop a theoretical framework for the exploration of quantum mechanical
coherent population transfer phenomena, with the ultimate goal of constructing
faithful models of devices for classical and quantum information processing
applications. We begin by outlining a general formalism for weak-field quantum
optics in the Schr\"{o}dinger picture, and we include a general
phenomenological representation of Lindblad decoherence mechanisms. We use this
formalism to describe the interaction of a single stationary multilevel atom
with one or more propagating classical or quantum laser fields, and we describe
in detail several manifestations and applications of electromagnetically
induced transparency. In addition to providing a clear description of the
nonlinear optical characteristics of electromagnetically transparent systems
that lead to ``ultraslow light,'' we verify that -- in principle -- a
multi-particle atomic or molecular system could be used as either a low power
optical switch or a quantum phase shifter. However, we demonstrate that the
presence of significant dephasing effects destroys the induced transparency,
and that increasing the number of particles weakly interacting with the probe
field only reduces the nonlinearity further. Finally, a detailed calculation of
the relative quantum phase induced by a system of atoms on a superposition of
spatially distinct Fock states predicts that a significant quasi-Kerr
nonlinearity and a low entropy cannot be simultaneously achieved in the
presence of arbitrary spontaneous emission rates. Within our model, we identify
the constraints that need to be met for this system to act as a one-qubit and a
two-qubit conditional phase gate.Comment: 25 pages, 14 figure
Secure self-calibrating quantum random bit generator
Random bit generators (RBGs) are key components of a variety of information
processing applications ranging from simulations to cryptography. In
particular, cryptographic systems require "strong" RBGs that produce
high-entropy bit sequences, but traditional software pseudo-RBGs have very low
entropy content and therefore are relatively weak for cryptography. Hardware
RBGs yield entropy from chaotic or quantum physical systems and therefore are
expected to exhibit high entropy, but in current implementations their exact
entropy content is unknown. Here we report a quantum random bit generator
(QRBG) that harvests entropy by measuring single-photon and entangled
two-photon polarization states. We introduce and implement a quantum
tomographic method to measure a lower bound on the "min-entropy" of the system,
and we employ this value to distill a truly random bit sequence. This approach
is secure: even if an attacker takes control of the source of optical states, a
secure random sequence can be distilled.Comment: 5 pages, 2 figure
Properties of implanted and CVD incorporated nitrogen-vacancy centers: preferential charge state and preferential orientation
The combination of the long electron state spin coherence time and the optical coupling of the ground electronic states to an excited state manifold makes the nitrogen-vacancy (NV) center in diamond an attractive candidate for quantum information processing. To date the best spin and optical properties have been found in centers deep within the diamond crystal. For useful devices it will be necessary to engineer NVs with similar properties close to the diamond surface. We report on properties including charge state control and preferential orientation for near surface NVs formed either in CVD growth or through implantation and annealing
Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide
The optical coupling of guided modes in a GaP waveguide to nitrogen-vacancy
(NV) centers in diamond is demonstrated. The electric field penetration into
diamond and the loss of the guided mode are measured. The results indicate that
the GaP-diamond system could be useful for realizing coupled microcavity-NV
devices for quantum information processing in diamond.Comment: 4 pages 4 figure
A symmetry analyser for non-destructive Bell state detection using EIT
We describe a method to project photonic two-qubit states onto the symmetric
and antisymmetric subspaces of their Hilbert space. This device utilizes an
ancillary coherent state, together with a weak cross-Kerr non-linearity,
generated, for example, by electromagnetically induced transparency. The
symmetry analyzer is non-destructive, and works for small values of the
cross-Kerr coupling. Furthermore, this device can be used to construct a
non-destructive Bell state detector.Comment: Final published for
- …