5,280 research outputs found

    Locating the magnetospheric ring current

    Get PDF
    Protons are studied in the global depression of the earth's horizontal magnetic field. It is shown that 10 to 100 keV protons dominate ring current energetics in two preferred regions of cyclotron instability, which serve as stable trapping boundaries for ring current protons. The only apparent means of removing this stably trapped belt of particles are considered to be by charge exchange interactions, or by outward expansion of the plasmapause to erode the ring current. Both of these processes require about two days, which is the characteristic decay period of the main phase depression. Questions whose answers are necessary to formulate a quantitative theory of geomagnetic storms which relates main phase depression to solar wind parameters are included

    Unstable growth of unducted whistlers propagating at an angle to the geomagnetic field

    Get PDF
    Unstable growth rate of unducted whistler waves propagating at angle to geomagnetic fiel

    Magnetospheric electrons

    Get PDF
    Coupling of source, transport, and sink processes produces a fairly accurate model for the macroscopic structure and dynamics of magnetospheric electrons. Auroral electrons are controlled by convective transport from a plasma sheet source coupled with a precipitation loss due to whistler and electrostatic plasma turbulence. Outer and inner zone electrons are governed by radial diffusion transport from convection and acceleration sources external to the plasmapause and by parasitic precipitation losses arising from cyclotron and Landau interactions with whistler and ion cyclotron turbulence

    Parton Distributions

    Full text link
    I discuss our current understanding of parton distributions. I begin with the underlying theoretical framework, and the way in which different data sets constrain different partons, highlighting recent developments. The methods of examining the uncertainties on the distributions and those physical quantities dependent on them is analysed. Finally I look at the evidence that additional theoretical corrections beyond NLO perturbative QCD may be necessary, what type of corrections are indicated and the impact these may have on the uncertainties.Comment: Invited talk at "XXI International Symposium on Lepton and Photon Interactions at High Energies," (Fermilab, Chicago, August 2003). 12 pages, 21 figure

    A unified theory of stable auroral red arc formation at the plasmapause

    Get PDF
    A theory is proposed that SAR-arcs are generated at the plasmapause as a consequence of the turbulent dissipation of ring current energy. During the recovery phase of a geomagnetic storm, the plasmapause expands outward into the symmetric ring current. When the cold plasma densities reach about 100/cu cm, ring current protons become unstable and generate intense ion cyclotron wave turbulence in a narrow region 1/2 earth radius wide (just inside the plasmapause). Approximately one-half of the ring current energy is dissipated into wave turbulence which in turn is absorbed through a Landau resonant interaction with plasma spheric electrons. The combined thermal heat flux to the ionosphere due to Landau absorption of the wave energy and proton-electron Coulomb dissipation is sufficient to drive SAR-arcs at the observed intensities. It is predicted that the arcs should be localized to a narrow latitudinal range just within the stormtime plasmapause. They should occur at all local times and persist for the 10 to 20 hour duration of the plasma-pause expansion

    Additions to the Flora of Cedar County, Iowa

    Get PDF
    A survey of the vascular plants of Cedar County, Iowa, was made by the senior author during the growing season of 1950. A previous paper (Fay, 1952) presented an annotated list of 775 species found in the area studied. Subsequent collecting trips by the authors of this paper have resulted in the discovery of additional species. Several misidentifications caused errors in the previous account; these are corrected here. Introduced species are marked by an asterisk. The present paper brings up to date the number of species known to occur in Cedar County. It also describes the various ecological habitats of the county by listing characteristic species found in each

    Mitochondrial Dna Replacement Versus Nuclear Dna Persistence

    Full text link
    In this paper we consider two populations whose generations are not overlapping and whose size is large. The number of males and females in both populations is constant. Any generation is replaced by a new one and any individual has two parents for what concerns nuclear DNA and a single one (the mother) for what concerns mtDNA. Moreover, at any generation some individuals migrate from the first population to the second. In a finite random time TT, the mtDNA of the second population is completely replaced by the mtDNA of the first. In the same time, the nuclear DNA is not completely replaced and a fraction FF of the ancient nuclear DNA persists. We compute both TT and FF. Since this study shows that complete replacement of mtDNA in a population is compatible with the persistence of a large fraction of nuclear DNA, it may have some relevance for the Out of Africa/Multiregional debate in Paleoanthropology

    The covariant perturbative approach to cosmic microwave background anisotropies

    Get PDF
    The Ehlers-Ellis 1+3 formulation of covariant hydrodynamics, when supplemented with covariant radiative transport theory, gives an exact, physically transparent description of the physics of the cosmic microwave background radiation (CMB). Linearisation around a Friedmann-Robertson-Walker (FRW) universe provides a very direct and seamless route through to the linear, gauge-invariant perturbation equations for scalar, vector and tensor modes in an almost-FRW model. In this contribution we review covariant radiative transport theory and its application to the perturbative method for calculating and understanding the anisotropy of the CMB. Particular emphasis is placed on the inclusion of polarization in a fully covariant manner. With this inclusion, the covariant perturbative approach offers a complete description of linearised CMB physics in an almost-FRW universe.Comment: To appear in proceedings of SARS99 meeting in honour of G.F.R.Elli

    Classical stability and quantum instability of black-hole Cauchy horizons

    Full text link
    For a certain region of the parameter space {M,e,Λ}\{M,e,\Lambda\}, the Cauchy horizon of a (charged) black hole residing in de Sitter space is classically stable to gravitational perturbations. This implies that, when left to its own devices, classical theory is unable to retain full predictive power: the evolution of physical fields beyond the Cauchy horizon is not uniquely determined by the initial conditions. In this paper we argue that the Cauchy horizon of a Reissner-Nordstr\"om-de Sitter black hole must always be unstable quantum mechanically.Comment: 4 pages; uses ReVTeX; figure available upon request to [email protected]

    Components of the gravitational force in the field of a gravitational wave

    Full text link
    Gravitational waves bring about the relative motion of free test masses. The detailed knowledge of this motion is important conceptually and practically, because the mirrors of laser interferometric detectors of gravitational waves are essentially free test masses. There exists an analogy between the motion of free masses in the field of a gravitational wave and the motion of free charges in the field of an electromagnetic wave. In particular, a gravitational wave drives the masses in the plane of the wave-front and also, to a smaller extent, back and forth in the direction of the wave's propagation. To describe this motion, we introduce the notion of `electric' and `magnetic' components of the gravitational force. This analogy is not perfect, but it reflects some important features of the phenomenon. Using different methods, we demonstrate the presence and importance of what we call the `magnetic' component of motion of free masses. It contributes to the variation of distance between a pair of particles. We explicitely derive the full response function of a 2-arm laser interferometer to a gravitational wave of arbitrary polarization. We give a convenient description of the response function in terms of the spin-weighted spherical harmonics. We show that the previously ignored `magnetic' component may provide a correction of up to 10 %, or so, to the usual `electric' component of the response function. The `magnetic' contribution must be taken into account in the data analysis, if the parameters of the radiating system are not to be mis-estimated.Comment: prints to 29 pages including 9 figures, new title, additional explanations and references in response to referee's comments, to be published in Class. Quant. Gra
    corecore