2,213 research outputs found

    Basis-independent methods for the two-Higgs-doublet model II. The significance of tan(beta)

    Full text link
    In the most general two-Higgs-doublet model (2HDM), there is no distinction between the two complex hypercharge-one SU(2) doublet scalar fields, Phi_a (a=1,2). Thus, any two orthonormal linear combinations of these two fields can serve as a basis for the Lagrangian. All physical observables of the model must therefore be basis-independent. For example, tan(beta)=/ is basis-dependent and thus cannot be a physical parameter of the model. In this paper, we provide a basis-independent treatment of the Higgs sector with particular attention to the neutral Higgs boson mass-eigenstates, which generically are not eigenstates of CP. We then demonstrate that all physical Higgs couplings are indeed independent of tan(beta). In specialized versions of the 2HDM, tan(beta) can be promoted to a physical parameter of the Higgs-fermion interactions. In the most general 2HDM, the Higgs-fermion couplings can be expressed in terms of a number of physical "tan(beta)--like" parameters that are manifestly basis-independent. The minimal supersymmetric extension of the Standard Model provides a simple framework for exhibiting such effects.Comment: 56 pages, 5 tables, with Eq. (65) corrected (erratum to appear in Physical Review D

    Implementation of Multidimensional Databases with Document-Oriented NoSQL

    Get PDF
    International audienceNoSQL (Not Only SQL) systems are becoming popular due to known advantages such as horizontal scalability and elasticity. In this paper, we study the implementation of data warehouses with document-oriented NoSQL systems. We propose mapping rules that transform the multidimensional data model to logical document-oriented models. We consider three different logical models and we use them to instantiate data warehouses. We focus on data loading, model-to-model conversion and OLAP cuboid computation

    Do low surface brightness galaxies have dense disks?

    Full text link
    The disk masses of four low surface brightness galaxies (LSB) were estimated using marginal gravitational stability criterion and the stellar velocity dispersion data which were taken from Pizzella et al., 2008 [1]. The constructed mass models appear to be close to the models of maximal disk. The results show that the disks of LSB galaxies may be significantly more massive than it is usually accepted from their brightnesses. In this case their surface densities and masses appear to be rather typical for normal spirals. Otherwise, unlike the disks of many spiral galaxies, the LSB disks are dynamically overheated.Comment: 14 pages, 10 figures, submitted to Astronomy Report

    A threshold phenomenon for embeddings of H0mH^m_0 into Orlicz spaces

    Full text link
    We consider a sequence of positive smooth critical points of the Adams-Moser-Trudinger embedding of H0mH^m_0 into Orlicz spaces. We study its concentration-compactness behavior and show that if the sequence is not precompact, then the liminf of the H0mH^m_0-norms of the functions is greater than or equal to a positive geometric constant.Comment: 14 Page

    Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model

    Get PDF
    The influence of the finite number N of particles coupled to a monochromatic wave in a collisionless plasma is investigated. For growth as well as damping of the wave, discrete particle numerical simulations show an N-dependent long time behavior resulting from the dynamics of individual particles. This behavior differs from the one due to the numerical errors incurred by Vlasov approaches. Trapping oscillations are crucial to long time dynamics, as the wave oscillations are controlled by the particle distribution inhomogeneities and the pulsating separatrix crossings drive the relaxation towards thermal equilibrium.Comment: 11 pages incl. 13 figs. Phys. Rev. E, in pres

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Evidence for early life in Earth’s oldest hydrothermal vent precipitates

    Get PDF
    Although it is not known when or where life on Earth began, some of the earliest habitable environments may have been submarine-hydrothermal vents. Here we describe putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old in ferruginous sedimentary rocks, interpreted as seafloor-hydrothermal vent-related precipitates, from the Nuvvuagittuq belt in Quebec, Canada. These structures occur as micrometre-scale haematite tubes and filaments with morphologies and mineral assemblages similar to those of filamentous microorganisms from modern hydrothermal vent precipitates and analogous microfossils in younger rocks. The Nuvvuagittuq rocks contain isotopically light carbon in carbonate and carbonaceous material, which occurs as graphitic inclusions in diagenetic carbonate rosettes, apatite blades intergrown among carbonate rosettes and magnetite–haematite granules, and is associated with carbonate in direct contact with the putative microfossils. Collectively, these observations are consistent with an oxidized biomass and provide evidence for biological activity in submarine-hydrothermal environments more than 3,770 million years ago
    corecore