2,522 research outputs found
Basis-independent methods for the two-Higgs-doublet model II. The significance of tan(beta)
In the most general two-Higgs-doublet model (2HDM), there is no distinction
between the two complex hypercharge-one SU(2) doublet scalar fields, Phi_a
(a=1,2). Thus, any two orthonormal linear combinations of these two fields can
serve as a basis for the Lagrangian. All physical observables of the model must
therefore be basis-independent. For example, tan(beta)=/ is
basis-dependent and thus cannot be a physical parameter of the model. In this
paper, we provide a basis-independent treatment of the Higgs sector with
particular attention to the neutral Higgs boson mass-eigenstates, which
generically are not eigenstates of CP. We then demonstrate that all physical
Higgs couplings are indeed independent of tan(beta). In specialized versions of
the 2HDM, tan(beta) can be promoted to a physical parameter of the
Higgs-fermion interactions. In the most general 2HDM, the Higgs-fermion
couplings can be expressed in terms of a number of physical "tan(beta)--like"
parameters that are manifestly basis-independent. The minimal supersymmetric
extension of the Standard Model provides a simple framework for exhibiting such
effects.Comment: 56 pages, 5 tables, with Eq. (65) corrected (erratum to appear in
Physical Review D
Academic freedom in Europe: reviewing UNESCO’s recommendation
This paper examines the compliance of universities in the European Union with the UNESCO Recommendation concerning the Status of Higher–Education Teaching Personnel, which deals primarily with protection for academic freedom. The paper briefly surveys the European genesis of the modern research university and academic freedom, before evaluating compliance with the UNESCO recommendation on institutional autonomy, academic freedom, university governance and tenure. Following from this, the paper examines the reasons for the generally low level of compliance with the UNESCO Recommendation within the EU states, and considers how such compliance could be improved
Evaluating the Robustness of Learning Analytics Results Against Fake Learners
Massive Open Online Courses (MOOCs) collect large amounts of rich data. A primary objective of Learning Analytics (LA) research is studying these data in order to improve the pedagogy of interactive
learning environments. Most studies make the underlying assumption that the data represent truthful and honest learning activity. However, previous studies showed that MOOCs can have large cohorts of users that
break this assumption and achieve high performance through behaviors such as Cheating Using Multiple Accounts or unauthorized collaboration, and we therefore denote them fake learners. Because of their aberrant
behavior, fake learners can bias the results of Learning Analytics (LA) models. The goal of this study is to evaluate the robustness of LA results when the data contain a considerable number of fake learners. Our
methodology follows the rationale of ‘replication research’. We challenge the results reported in a well-known, and one of the first LA/PedagogicEfficacy MOOC papers, by replicating its results with and without the fake learners (identified using machine learning algorithms). The results show that fake learners exhibit very different behavior compared to true learners. However, even though they are a significant portion of the student
population (∼15%), their effect on the results is not dramatic (does not change trends). We conclude that the LA study that we challenged was robust against fake learners. While these results carry an optimistic
message on the trustworthiness of LA research, they rely on data from one MOOC. We believe that this issue should receive more attention within the LA research community, and can explain some ‘surprising’ research results in MOOCs. Keywords: Learning Analytics, Educational Data Mining, MOOCs, Fake Learners, Reliability, IR
Implementation of Multidimensional Databases with Document-Oriented NoSQL
International audienceNoSQL (Not Only SQL) systems are becoming popular due to known advantages such as horizontal scalability and elasticity. In this paper, we study the implementation of data warehouses with document-oriented NoSQL systems. We propose mapping rules that transform the multidimensional data model to logical document-oriented models. We consider three different logical models and we use them to instantiate data warehouses. We focus on data loading, model-to-model conversion and OLAP cuboid computation
UGC 7388: a galaxy with two tidal loops
We present the results of spectroscopic and morphological studies of the
galaxy UGC7388 with the 8.1-m Gemini North telescope. Judging by its observed
characteristics, UGC7388 is a giant late-type spiral galaxy seen almost
edge-on. The main body of the galaxy is surrounded by two faint (\mu(B) ~ 24
and \mu(B) ~ 25.5) extended (~20-30 kpc) loop-like structures. A large-scale
rotation of the brighter loop about the main galaxy has been detected. We
discuss the assumption that the tidal disruption of a relatively massive
companion is observed in the case of UGC7388. A detailed study and modeling of
the observed structure of this unique galaxy can give important information
about the influence of the absorption of massive companions on the galactic
disks and about the structure of the dark halo around UGC7388.Comment: 8 pages, 5 figure
Do low surface brightness galaxies have dense disks?
The disk masses of four low surface brightness galaxies (LSB) were estimated
using marginal gravitational stability criterion and the stellar velocity
dispersion data which were taken from Pizzella et al., 2008 [1]. The
constructed mass models appear to be close to the models of maximal disk. The
results show that the disks of LSB galaxies may be significantly more massive
than it is usually accepted from their brightnesses. In this case their surface
densities and masses appear to be rather typical for normal spirals. Otherwise,
unlike the disks of many spiral galaxies, the LSB disks are dynamically
overheated.Comment: 14 pages, 10 figures, submitted to Astronomy Report
A threshold phenomenon for embeddings of into Orlicz spaces
We consider a sequence of positive smooth critical points of the
Adams-Moser-Trudinger embedding of into Orlicz spaces. We study its
concentration-compactness behavior and show that if the sequence is not
precompact, then the liminf of the -norms of the functions is greater
than or equal to a positive geometric constant.Comment: 14 Page
Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model
The influence of the finite number N of particles coupled to a monochromatic
wave in a collisionless plasma is investigated. For growth as well as damping
of the wave, discrete particle numerical simulations show an N-dependent long
time behavior resulting from the dynamics of individual particles. This
behavior differs from the one due to the numerical errors incurred by Vlasov
approaches. Trapping oscillations are crucial to long time dynamics, as the
wave oscillations are controlled by the particle distribution inhomogeneities
and the pulsating separatrix crossings drive the relaxation towards thermal
equilibrium.Comment: 11 pages incl. 13 figs. Phys. Rev. E, in pres
Four Lessons in Versatility or How Query Languages Adapt to the Web
Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”
- …