24,049 research outputs found

    Near-bottom seismic profiling: High lateral variability, anomalous amplitudes, and estimates of attenuation

    Get PDF
    For almost a decade the Marine Physical Laboratory of Scripps Institution of Oceanography has been conducting near‐bottom geophysical surveys involving quantitative seismic profiling. Operating initially at 4 kHz and more recently at 6 kHz, this system has provided a wealth of fine scale quantitative data on the acoustic properties of ocean sediments. Over lateral distances of a few meters, 7‐dB changes in overall reflected energy as well as 10‐dB changes from individual reflectors have been observed. Anomalously high amplitudes from deep reflectors have been commonly observed, suggesting that multilayer interference is prevalent in records from such pulsed cw profilers. This conclusion is supported by results from sediment core physical property work and related convolution modeling, as well as by the significant differences observed between 4‐ and 6‐kHz profiles. In general, however, lateral consistency has been adequate in most areas surveyed to permit good estimates of acoustic attenuation from returns from dipping reflectors and sediment wedges

    The atomic orbitals of the topological atom

    Get PDF
    The effective atomic orbitals have been realized in the framework of Bader’s atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure

    A Link Between the Semi-Major Axis of Extrasolar Gas Giant Planets and Stellar Metallicity

    Full text link
    The fact that most extrasolar planets found to date are orbiting metal-rich stars lends credence to the core accretion mechanism of gas giant planet formation over its competitor, the disc instability mechanism. However, the core accretion mechanism is not refined to the point of explaining orbital parameters such as their unexpected semi-major axes and eccentricities. We propose a model, which correlates the metallicity of the host star with the original semi-major axis of its most massive planet, prior to migration, considering that the core accretion scenario governs giant gas planet formation. The model predicts that the optimum regions for planetary formation shift inward as stellar metallicity decreases, providing an explanation for the observed absence of long period planets in metal-poor stars. We compare our predictions with the available data on extrasolar planets for stars with masses similar to the mass of the Sun. A fitting procedure produces an estimate of what we define as the Zero Age Planetary Orbit (ZAPO) curve as a function of the metallicity of the star. The model also hints that the lack of planets circling metal-poor stars may be partly caused by an enhanced destruction probability during the migration process, since the planets lie initially closer to the central stars.Comment: Nature of the replacement: According to recent simulations, the temperature profile, T, is more adequately reproduced by beta = 1 rather than beta = 2. We have introduced a distance scale factor that solves the very fast drop of T for low metallicity and introduces naturally the inferior distance limit of our ZAPO. Under this modification all the fitting process was altere

    Newton's method and Baker domains

    Full text link
    We show that there exists an entire function f without zeros for which the associated Newton function N(z)=z-f(z)/f'(z) is a transcendental meromorphic functions without Baker domains. We also show that there exists an entire function f with exactly one zero for which the complement of the immediate attracting basin has at least two components and contains no invariant Baker domains of N. The second result answers a question of J. Rueckert and D. Schleicher while the first one gives a partial answer to a question of X. Buff.Comment: 6 page

    Epitaxial growth of deposited amorphous layer by laser annealing

    Get PDF
    We demonstrate that a single short pulse of laser irradiation of appropriate energy is capable of recrystallizing in open air an amorphous Si layer deposited on a (100) single-crystal substrate into an epitaxial layer. The laser pulse annealing technique is shown to overcome the interfacial oxide obstacle which usually leads to polycrystalline formation in normal thermal annealing

    Geologic and tectonic setting of the MARK area

    Get PDF

    Study of the transition from pairing vibrational to pairing rotational regimes between magic numbers N=50 and N=82, with two-nucleon transfer

    Full text link
    Absolute values of two-particle transfer cross sections along the Sn-isotopic chain from closed shell to closed shell (100Sn,132Sn) are calculated taking properly into account nuclear correlations, as well as the successive, simultaneous and non-orthogonality contributions to the differential cross sections. The results are compared with systematic, homogeneous bombarding conditions (p, t) data. The observed agreement, almost within statistical errors and without free parameters, testify to the fact that theory is able to be quantitative in its predictions

    Density of states in graphene with vacancies: midgap power law and frozen multifractality

    Get PDF
    The density of states (DoS), ϱ(E)\varrho(E), of graphene is investigated numerically and within the self-consistent T-matrix approximation (SCTMA) in the presence of vacancies within the tight binding model. The focus is on compensated disorder, where the concentration of vacancies, nAn_\text{A} and nBn_\text{B}, in both sub-lattices is the same. Formally, this model belongs to the chiral symmetry class BDI. The prediction of the non-linear sigma-model for this class is a Gade-type singularity ϱ(E)E1exp(log(E)1/x)\varrho(E) \sim |E|^{-1}\exp(-|\log(E)|^{-1/x}). Our numerical data is compatible with this result in a preasymptotic regime that gives way, however, at even lower energies to ϱ(E)E1log(E)x\varrho(E)\sim E^{-1}|\log(E)|^{-\mathfrak{x}}, 1x<21\leq \mathfrak{x} < 2. We take this finding as an evidence that similar to the case of dirty d-wave superconductors, also generic bipartite random hopping models may exhibit unconventional (strong-coupling) fixed points for certain kinds of randomly placed scatterers if these are strong enough. Our research suggests that graphene with (effective) vacancy disorder is a physical representative of such systems.Comment: References updated onl

    Oscillating Neutrinos from the Galactic Center

    Full text link
    It has recently been demonstrated that the γ\gamma-ray emission spectrum of the EGRET-identified, central Galactic source 2EG J1746-2852 can be well fitted by positing that these photons are generated by the decay of π0\pi^0's produced in p-p scattering at or near an energizing shock. Such scattering also produces charged pions which decay leptonically.The ratio of γ\gamma-rays to neutrinos generated by the central Galactic source may be accurately determined and a well-defined and potentially-measurable high energy neutrino flux at Earth is unavoidable. An opportunity, therefore, to detect neutrino oscillations over an unprecedented scale is offered by this source. In this paper we assess the prospects for such an observation with the generation of neutrino \v{C}erenkov telescopes now in the planning stage. We determine that the next generation of detectors may find an oscillation signature in the Galactic Center (GC) signal.Comment: 45 pages, LaTeX, uses ApJ style, some minor revisions, this final version to be published in ApJ
    corecore