2,199 research outputs found
Coherent optical transfer of Feshbach molecules to a lower vibrational state
Using the technique of stimulated Raman adiabatic passage (STIRAP) we have
coherently transferred ultracold 87Rb2 Feshbach molecules into a more deeply
bound vibrational quantum level. Our measurements indicate a high transfer
efficiency of up to 87%. As the molecules are held in an optical lattice with
not more than a single molecule per lattice site, inelastic collisions between
the molecules are suppressed and we observe long molecular lifetimes of about 1
s. Using STIRAP we have created quantum superpositions of the two molecular
states and tested their coherence interferometrically. These results represent
an important step towards Bose-Einstein condensation (BEC) of molecules in the
vibrational ground state.Comment: 4 pages, 5 figure
Cruising through molecular bound state manifolds with radio frequency
The emerging field of ultracold molecules with their rich internal structure
is currently attracting a lot of interest. Various methods have been developed
to produce ultracold molecules in pre-set quantum states. For future
experiments it will be important to efficiently transfer these molecules from
their initial quantum state to other quantum states of interest. Optical Raman
schemes are excellent tools for transfer, but can be involved in terms of
equipment, laser stabilization and finding the right transitions. Here we
demonstrate a very general and simple way for transfer of molecules from one
quantum state to a neighboring quantum state with better than 99% efficiency.
The scheme is based on Zeeman tuning the molecular state to avoided level
crossings where radio-frequency transitions can then be carried out. By
repeating this process at different crossings, molecules can be successively
transported through a large manifold of quantum states. As an important
spin-off of our experiments, we demonstrate a high-precision spectroscopy
method for investigating level crossings.Comment: 5 pages, 5 figures, submitted for publicatio
Repulsively bound atom pairs: Overview, Simulations and Links
We review the basic physics of repulsively bound atom pairs in an optical
lattice, which were recently observed in the laboratory, including the theory
and the experimental implementation. We also briefly discuss related many-body
numerical simulations, in which time-dependent Density Matrix Renormalisation
Group (DMRG) methods are used to model the many-body physics of a collection of
interacting pairs, and give a comparison of the single-particle quasimomentum
distribution measured in the experiment and results from these simulations. We
then give a short discussion of how these repulsively bound pairs relate to
bound states in some other physical systems.Comment: 7 pages, 3 figures, Proceedings of ICAP-2006 (Innsbruck
Trapping x‐ray radiation damage from homolytic Se–C bond cleavage in BnSeSeBn crystals (Bn=benzyl, CH2C6H5)
Irradiation of dibenzyl diselenide BnSeSeBn with X-ray or UV-light cleaves the Se-C and the Se-Se bonds, inducing stable and metastable radical states. They are inevitably important to all natural and life sciences. Structural changes due to X-ray-induced Se-C bond-cleavage could be pin-pointed in various high-resolution X-ray diffraction experiments for the first time. Extended DFT methods were applied to characterize the solid-state structure and support the refinement of the observed residuals as contributions from the BnSeSe • radical species. The X-ray or UV-irradiated crystalline samples of BnSeSeBn were characterized by solid-state EPR. This paper provides insight that in the course of X-ray structure analysis of selenium compounds not only organo-selenide radicals like RSe • may occur, but also organo diselenide BnSeSe • radicals and organic radicals R • are generated, particularly important to know in structural biology
Production of a Fermi gas of atoms in an optical lattice
We prepare a degenerate Fermi gas of potassium atoms by sympathetic cooling
with rubidium atoms in a one-dimensional optical lattice. In a tight lattice we
observe a change of the density of states of the system, which is a signature
of quasi two dimensional confinement. We also find that the dipolar
oscillations of the Fermi gas along the tight lattice are almost completely
suppressed.Comment: 4 pages, 4 figures, revised versio
Phase I/II study of single-agent lenvatinib in children and adolescents with refractory or relapsed solid malignancies and young adults with osteosarcoma (ITCC-050)
Osteosarcoma; Pediátrico; Tumores sólidosOsteosarcoma; Pediàtrica; Tumors sòlidsOsteosarcoma; Pediatric; Solid tumorsBackground
We report results from the phase I dose-finding and phase II expansion part of a multicenter, open-label study of single-agent lenvatinib in pediatric and young adult patients with relapsed/refractory solid tumors, including osteosarcoma and radioiodine-refractory differentiated thyroid cancer (RR-DTC) (NCT02432274).
Patients and methods
The primary endpoint of phase I was to determine the recommended phase II dose (RP2D) of lenvatinib in children with relapsed/refractory solid malignant tumors. Phase II primary endpoints were progression-free survival rate at 4 months (PFS-4) for patients with relapsed/refractory osteosarcoma; and objective response rate/best overall response for patients with RR-DTC at the RP2D.
Results
In phase I, 23 patients (median age, 12 years) were enrolled. With lenvatinib 14 mg/m2, three dose-limiting toxicities (hypertension, n = 2; increased alanine aminotransferase, n = 1) were reported, establishing 14 mg/m2 as the RP2D. In phase II, 31 patients with osteosarcoma (median age, 15 years) and 1 patient with RR-DTC (age 17 years) were enrolled. For the osteosarcoma cohort, PFS-4 (binomial estimate) was 29.0% [95% confidence interval (CI) 14.2% to 48.0%; full analysis set: n = 31], PFS-4 by Kaplan–Meier estimate was 37.8% (95% CI 20.0% to 55.4%; full analysis set) and median PFS was 3.0 months (95% CI 1.8-5.4 months). The objective response rate was 6.7% (95% CI 0.8% to 22.1%). The patient with RR-DTC had a best overall response of partial response. Some 60.8% of patients in phase I and 22.6% of patients in phase II (with osteosarcoma) had treatment-related treatment-emergent adverse events of grade ≥3.
Conclusions
The lenvatinib RP2D was 14 mg/m2. Single-agent lenvatinib showed activity in osteosarcoma; however, the null hypothesis could not be rejected. The safety profile was consistent with previous tyrosine kinase inhibitor studies. Lenvatinib is currently being investigated in osteosarcoma in combination with chemotherapy as part of a randomized, controlled trial (NCT04154189), in pediatric solid tumors in combination with everolimus (NCT03245151), and as a single agent in a basket study with enrollment ongoing (NCT04447755).This work was supported by Eisai Inc., Woodcliff Lake, NJ, USA and Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
Ultracold Molecules in the Ro-Vibrational Triplet Ground State
We report here on the production of an ultracold gas of tightly bound Rb2
molecules in the ro-vibrational triplet ground state, close to quantum
degeneracy. This is achieved by optically transferring weakly bound Rb2
molecules to the absolute lowest level of the ground triplet potential with a
transfer efficiency of about 90%. The transfer takes place in a 3D optical
lattice which traps a sizeable fraction of the tightly bound molecules with a
lifetime exceeding 200 ms.Comment: 4 pages, 3 figures. Phys. Rev. Lett. accepte
Repulsively bound atom pairs in an optical lattice
Throughout physics, stable composite objects are usually formed via
attractive forces, which allow the constituents to lower their energy by
binding together. Repulsive forces separate particles in free space. However,
in a structured environment such as a periodic potential and in the absence of
dissipation, stable composite objects can exist even for repulsive
interactions. Here we report on the first observation of such an exotic bound
state, comprised of a pair of ultracold atoms in an optical lattice. Consistent
with our theoretical analysis, these repulsively bound pairs exhibit long
lifetimes, even under collisions with one another. Signatures of the pairs are
also recognised in the characteristic momentum distribution and through
spectroscopic measurements. There is no analogue in traditional condensed
matter systems of such repulsively bound pairs, due to the presence of strong
decay channels. These results exemplify on a new level the strong
correspondence between the optical lattice physics of ultracold bosonic atoms
and the Bose-Hubbard model, a correspondence which is vital for future
applications of these systems to the study of strongly correlated condensed
matter systems and to quantum information.Comment: 5 pages, 4 figure
Strong electron-phonon coupling in delta-phase stabilized Pu
Heat capacity measurements of the delta-phase stabilized alloy Pu-Al suggest
that strong electron-phonon coupling is required to explain the moderate
renormalization of the electronic density of states near the Fermi energy. We
calculate the heat capacity contributions from the lattice and electronic
degrees of freedom as well as from the electron-lattice coupling term and find
good overall agreement between experiment and theory assuming a dimensionless
electron-phonon coupling parameter of order unity, lambda ~ 0.8. This large
electron-phonon coupling parameter is comparable to reported values in other
superconducting metals with face-centered cubic crystal structure, for example,
Pd (lambda ~ 0.7) and Pb (lambda ~ 1.5). Further, our analysis shows evidence
of a sizable residual low-temperature entropy contribution, S_{res} ~ 0.4 k_B
(per atom). We can fit the residual specific heat to a two-level system.
Therefore, we speculate that the observed residual entropy originates from
crystal-electric field effects of the Pu atoms or from self-irradiation induced
defects frozen in at low temperatures.Comment: 9 pages, 11 figures, to appear in Phys. Rev.
Magnetic state of plutonium ion in metallic Pu and its compounds
By LDA+U method with spin-orbit coupling (LDA+U+SO) the magnetic state and
electronic structure have been investigated for plutonium in \delta and \alpha
phases and for Pu compounds: PuN, PuCoGa5, PuRh2, PuSi2, PuTe, and PuSb. For
metallic plutonium in both phases in agreement with experiment a nonmagnetic
ground state was found with Pu ions in f^6 configuration with zero values of
spin, orbital, and total moments. This result is determined by a strong
spin-orbit coupling in 5f shell that gives in LDA calculation a pronounced
splitting of 5f states on f^{5/2} and f^{7/2} subbands. A Fermi level is in a
pseudogap between them, so that f^{5/2} subshell is already nearly completely
filled with six electrons before Coulomb correlation effects were taken into
account. The competition between spin-orbit coupling and exchange (Hund)
interaction (favoring magnetic ground state) in 5f shell is so delicately
balanced, that a small increase (less than 15%) of exchange interaction
parameter value from J_H=0.48eV obtained in constrain LDA calculation would
result in a magnetic ground state with nonzero spin and orbital moment values.
For Pu compounds investigated in the present work, predominantly f^6
configuration with nonzero magnetic moments was found in PuCoGa5, PuSi2, and
PuTe, while PuN, PuRh2, and PuSb have f^5 configuration with sizeable magnetic
moment values. Whereas pure jj coupling scheme was found to be valid for
metallic plutonium, intermediate coupling scheme is needed to describe 5f shell
in Pu compounds. The results of our calculations show that both spin-orbit
coupling and exchange interaction terms in the Hamiltonian must be treated in a
general matrix form for Pu and its compounds.Comment: 20 pages, LaTeX; changed discussion on reference pape
- …