53,252 research outputs found

    Leading-edge vortex research: Some nonplanar concepts and current challenges

    Get PDF
    Some background information is provided for the Vortex Flow Aerodynamics Conference and that current slender wing airplanes do not use variable leading edge geometry to improve transonic drag polar is shown. Highlights of some of the initial studies combining wing camber, or flaps, with vortex flow are presented. Current vortex flap studies were reviewed to show that there is a large subsonic data base and that transonic and supersonic generic studies have begun. There is a need for validated flow field solvers to calculate vortex/shock interactions at transonic and supersonic speeds. Many important research opportunities exist for fundamental vortex flow investigations and for designing advanced fighter concepts

    Production of a Z boson and two jets with one heavy-quark tag

    Get PDF
    We present a next-to-leading-order calculation of the production of a Z boson with two jets, one or more of which contains a heavy quark (Q=c,b). We show that the cross section with only one heavy-quark jet is larger than that with two heavy-quark jets at both the Fermilab Tevatron and the CERN LHC. These processes are the dominant irreducible backgrounds to a Higgs boson produced in association with a Z boson, followed by h->bb. Our calculation makes use of a heavy-quark distribution function, which resums collinear logarithms and makes the next-to-leading-order calculation tractable.Comment: 11 pages, 5 figures. Erratum adde

    Some neutron and gamma radiation characteristics of plutonium cermet fuel for isotopic power sources

    Get PDF
    Gamma and neutron measurements on various types of plutonium sources are presented in order to show the effects of O-17, O-18 F-19, Pu-236, age of the fuel, and size of the source on the gamma and neutron spectra. Analysis of the radiation measurements shows that fluorine is the main contributor to the neutron yields from present plutonium-molybdenum cermet fuel, while both fluorine and Pu-236 daughters contribute significantly to the gamma ray intensities

    Assessment of Neuropsychological Trajectories in Longitudinal Population-Based Studies of Children

    Get PDF
    This paper provides a strategy for the assessment of brain function in longitudinal cohort studies of children. The proposed strategy invokes both domain-specific and omnibus intelligence test approaches. In order to minimise testing burden and practice effects, the cohort is divided into four groups with one-quarter tested at 6-monthly intervals in the 0–2-year age range (at ages 6 months, 1.0, 1.5 and 2.0 years) and at annual intervals from ages 3–20 (one-quarter of the children at age 3, another at age 4, etc). This strategy allows investigation of cognitive development and of the relationship between environmental influences and development at each age. It also allows introduction of new domains of function when age-appropriate. As far as possible, tests are used that will provide a rich source of both longitudinal and cross-sectional data. The testing strategy allows the introduction of novel tests and new domains as well as piloting of tests when the test burden is relatively light. In addition to the recommended tests for each age and domain, alternative tests are described. Assessment methodology and knowledge about child cognitive development will change over the next 20 years, and strategies are suggested for altering the proposed test schedule as appropriate

    Highly frustrated spin-lattice models of magnetism and their quantum phase transitions: A microscopic treatment via the coupled cluster method

    Full text link
    We outline how the coupled cluster method of microscopic quantum many-body theory can be utilized in practice to give highly accurate results for the ground-state properties of a wide variety of highly frustrated and strongly correlated spin-lattice models of interest in quantum magnetism, including their quantum phase transitions. The method itself is described, and it is shown how it may be implemented in practice to high orders in a systematically improvable hierarchy of (so-called LSUBmm) approximations, by the use of computer-algebraic techniques. The method works from the outset in the thermodynamic limit of an infinite lattice at all levels of approximation, and it is shown both how the "raw" LSUBmm results are themselves generally excellent in the sense that they converge rapidly, and how they may accurately be extrapolated to the exact limit, m→∞m \rightarrow \infty, of the truncation index mm, which denotes the {\it only} approximation made. All of this is illustrated via a specific application to a two-dimensional, frustrated, spin-half J1XXZJ^{XXZ}_{1}--J2XXZJ^{XXZ}_{2} model on a honeycomb lattice with nearest-neighbor and next-nearest-neighbor interactions with exchange couplings J1>0J_{1}>0 and J2≡κJ1>0J_{2} \equiv \kappa J_{1} > 0, respectively, where both interactions are of the same anisotropic XXZXXZ type. We show how the method can be used to determine the entire zero-temperature ground-state phase diagram of the model in the range 0≤κ≤10 \leq \kappa \leq 1 of the frustration parameter and 0≤Δ≤10 \leq \Delta \leq 1 of the spin-space anisotropy parameter. In particular, we identify a candidate quantum spin-liquid region in the phase space

    Spin-1/2 J1J_{1}-J2J_{2} Heisenberg model on a cross-striped square lattice

    Full text link
    Using the coupled cluster method (CCM) we study the full (zero-temperature) ground-state (GS) phase diagram of a spin-half (s=1/2s=1/2) J1J_{1}-J2J_{2} Heisenberg model on a cross-striped square lattice. Each site of the square lattice has 4 nearest-neighbour exchange bonds of strength J1J_{1} and 2 next-nearest-neighbour (diagonal) bonds of strength J2J_{2}. The J2J_{2} bonds are arranged so that the basic square plaquettes in alternating columns have either both or no J2J_{2} bonds included. The classical (s→∞s \rightarrow \infty) version of the model has 4 collinear phases when J1J_{1} and J2J_{2} can take either sign. Three phases are antiferromagnetic (AFM), showing so-called N\'{e}el, double N\'{e}el and double columnar striped order respectively, while the fourth is ferromagnetic. For the quantum s=1/2s=1/2 model we use the 3 classical AFM phases as CCM reference states, on top of which the multispin-flip configurations arising from quantum fluctuations are incorporated in a systematic truncation hierarchy. Calculations of the corresponding GS energy, magnetic order parameter and the susceptibilities of the states to various forms of valence-bond crystalline (VBC) order are thus carried out numerically to high orders of approximation and then extrapolated to the (exact) physical limit. We find that the s=1/2s=1/2 model has 5 phases, which correspond to the four classical phases plus a new quantum phase with plaquette VBC order. The positions of the 5 quantum critical points are determined with high accuracy. While all 4 phase transitions in the classical model are first order, we find strong evidence that 3 of the 5 quantum phase transitions in the s=1/2s=1/2 model are of continuous deconfined type

    A frustrated spin-1/2 Heisenberg antiferromagnet on a chevron-square lattice

    Full text link
    The coupled cluster method (CCM) is used to study the zero-temperature properties of a frustrated spin-half (s=12s={1}{2}) J1J_{1}--J2J_{2} Heisenberg antiferromagnet (HAF) on a 2D chevron-square lattice. Each site on an underlying square lattice has 4 nearest-neighbor exchange bonds of strength J1>0J_{1}>0 and 2 next-nearest-neighbor (diagonal) bonds of strength J2≡xJ1>0J_{2} \equiv x J_{1}>0, with each square plaquette having only one diagonal bond. The diagonal bonds form a chevron pattern, and the model thus interpolates smoothly between 2D HAFs on the square (x=0x=0) and triangular (x=1x=1) lattices, and also extrapolates to disconnected 1D HAF chains (x→∞x \to \infty). The classical (s→∞s \to \infty) version of the model has N\'{e}el order for 0<x<xcl0 < x < x_{{\rm cl}} and a form of spiral order for xcl<x<∞x_{{\rm cl}} < x < \infty, where xcl=12x_{{\rm cl}} = {1}{2}. For the s=12s={1}{2} model we use both these classical states, as well as other collinear states not realized as classical ground-state (GS) phases, as CCM reference states, on top of which the multispin-flip configurations resulting from quantum fluctuations are incorporated in a systematic truncation scheme, which we carry out to high orders and extrapolate to the physical limit. We calculate the GS energy, GS magnetic order parameter, and the susceptibilities of the states to various forms of valence-bond crystalline (VBC) order, including plaquette and two different dimer forms. We find that the s=12s={1}{2} model has two quantum critical points, at xc1≈0.72(1)x_{c_{1}} \approx 0.72(1) and xc2≈1.5(1)x_{c_{2}} \approx 1.5(1), with N\'{e}el order for 0<x<xc10 < x < x_{c_{1}}, a form of spiral order for xc1<x<xc2x_{c_{1}} < x < x_{c_{2}} that includes the correct three-sublattice 120∘120^{\circ} spin ordering for the triangular-lattice HAF at x=1x=1, and parallel-dimer VBC order for xc2<x<∞x_{c_{2}} < x < \infty
    • …
    corecore