265 research outputs found
Modulation of CMB polarization with a warm rapidly-rotating half-wave plate on the Atacama B-Mode Search (ABS) instrument
We evaluate the modulation of Cosmic Microwave Background (CMB) polarization
using a rapidly-rotating, half-wave plate (HWP) on the Atacama B-Mode Search
(ABS). After demodulating the time-ordered-data (TOD), we find a significant
reduction of atmospheric fluctuations. The demodulated TOD is stable on time
scales of 500-1000 seconds, corresponding to frequencies of 1-2 mHz. This
facilitates recovery of cosmological information at large angular scales, which
are typically available only from balloon-borne or satellite experiments. This
technique also achieves a sensitive measurement of celestial polarization
without differencing the TOD of paired detectors sensitive to two orthogonal
linear polarizations. This is the first demonstration of the ability to remove
atmospheric contamination at these levels from a ground-based platform using a
rapidly-rotating HWP.Comment: 8 pages, 8 figures, Published in RSI under the title "Modulation of
cosmic microwave background polarization with a warm rapidly rotating
half-wave plate on the Atacama B-Mode Search instrument.
Recovery of Large Angular Scale CMB Polarization for Instruments Employing Variable-delay Polarization Modulators
Variable-delay Polarization Modulators (VPMs) are currently being implemented
in experiments designed to measure the polarization of the cosmic microwave
background on large angular scales because of their capability for providing
rapid, front-end polarization modulation and control over systematic errors.
Despite the advantages provided by the VPM, it is important to identify and
mitigate any time-varying effects that leak into the synchronously modulated
component of the signal. In this paper, the effect of emission from a K
VPM on the system performance is considered and addressed. Though instrument
design can greatly reduce the influence of modulated VPM emission, some
residual modulated signal is expected. VPM emission is treated in the presence
of rotational misalignments and temperature variation. Simulations of
time-ordered data are used to evaluate the effect of these residual errors on
the power spectrum. The analysis and modeling in this paper guides
experimentalists on the critical aspects of observations using VPMs as
front-end modulators. By implementing the characterizations and controls as
described, front-end VPM modulation can be very powerful for mitigating
noise in large angular scale polarimetric surveys. None of the systematic
errors studied fundamentally limit the detection and characterization of
B-modes on large scales for a tensor-to-scalar ratio of . Indeed,
is achievable with commensurately improved characterizations and
controls.Comment: 13 pages, 13 figures, 1 table, matches published versio
Articular contact in a three-dimensional model of the knee
This study is aimed at the analysis of articular contact in a three-dimensional mathematical model of the human knee-joint. In particular the effect of articular contact on the passive motion characteristics is assessed in relation to experimentally obtained joint kinematics. Two basically different mathematical contact descriptions were compared for this purpose. One description was for rigid contact and one for deformable contact. The description of deformable contact is based on a simplified theory for contact of a thin elastic layer on a rigid foundation. The articular cartilage was described either as a linear elastic material or as a non-linear elastic material. The contact descriptions were introduced in a mathematical model of the knee. The locations of the ligament insertions and the geometry of the articular surfaces were obtained from a joint specimen of which experimentally determined kinematic data were available, and were used as input for the model. The ligaments were described by non-linear elastic line elements. The mechanical properties of the ligaments and the articular cartilage were derived from literature data. Parametric model evaluations showed that, relative to rigid articular contact, the incorporation of deformable contact did not alter the motion characteristics in a qualitative sense, and that the quantitative changes were small. Variation of the elasticity of the elastic layer revealed that decreasing the surface stiffness caused the ligaments to relax and, as a consequence, increased the joint laxity, particularly for axial rotation. The difference between the linear and the non-linear deformable contact in the knee model was very small for moderate loading conditions. The motion characteristics simulated with the knee model compared very well with the experiments. It is concluded that for simulation of the passive motion characteristics of the knee, the simplified description for contact of a thin linear elastic layer on a rigid foundation is a valid approach when aiming at the study of the motion characteristics for moderate loading conditions. With deformable contact in the knee model, geometric conformity between the surfaces can be modelled as opposed to rigid contact which assumed only point contact
Scalable background-limited polarization-sensitive detectors for mm-wave applications
We report on the status and development of polarization-sensitive detectors
for millimeter-wave applications. The detectors are fabricated on
single-crystal silicon, which functions as a low-loss dielectric substrate for
the microwave circuitry as well as the supporting membrane for the
Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is
realized as a symmetric structure and on-chip filters are employed to define
the detection bandwidth. A hybridized integrated enclosure reduces the
high-frequency THz mode set that can couple to the TES bolometers. An
implementation of the detector architecture at Q-band achieves 90% efficiency
in each polarization. The design is scalable in both frequency coverage, 30-300
GHz, and in number of detectors with uniform characteristics. Hence, the
detectors are desirable for ground-based or space-borne instruments that
require large arrays of efficient background-limited cryogenic detectors.Comment: 7 pages, 3 figures, Presented at SPIE Astronomical Telescopes and
Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors
and Instrumentation for Astronomy VII. To be published in Proceedings of SPIE
Volume 915
Silicon-Based Antenna-Coupled Polarization-Sensitive Millimeter-Wave Bolometer Arrays for Cosmic Microwave Background Instruments
We describe feedhorn-coupled polarization-sensitive detector arrays that
utilize monocrystalline silicon as the dielectric substrate material.
Monocrystalline silicon has a low-loss tangent and repeatable dielectric
constant, characteristics that are critical for realizing efficient and uniform
superconducting microwave circuits. An additional advantage of this material is
its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES)
bolometers are antenna-coupled to in-band radiation via a symmetric planar
orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a
separate superconducting microstrip transmission line circuit. On-chip
filtering is employed to both reject out-of-band radiation from the upper band
edge to the gap frequency of the niobium superconductor, and to flexibly define
the bandwidth for each TES to meet the requirements of the application. The
microwave circuit is compatible with multi-chroic operation. Metalized silicon
platelets are used to define the backshort for the waveguide probes. This
micro-machined structure is also used to mitigate the coupling of out-of-band
radiation to the microwave circuit. At 40 GHz, the detectors have a measured
efficiency of 90%. In this paper, we describe the development of the 90 GHz
detector arrays that will be demonstrated using the Cosmology Large Angular
Scale Surveyor (CLASS) ground-based telescope
The Atacama Cosmology Telescope: A Measurement of the 600< ell <8000 Cosmic Microwave Background Power Spectrum at 148 GHz
We present a measurement of the angular power spectrum of the cosmic
microwave background (CMB) radiation observed at 148 GHz. The measurement uses
maps with 1.4' angular resolution made with data from the Atacama Cosmology
Telescope (ACT). The observations cover 228 square degrees of the southern sky,
in a 4.2-degree-wide strip centered on declination 53 degrees South. The CMB at
arcminute angular scales is particularly sensitive to the Silk damping scale,
to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by
radio sources and dusty galaxies. After masking the 108 brightest point sources
in our maps, we estimate the power spectrum between 600 < \ell < 8000 using the
adaptive multi-taper method to minimize spectral leakage and maximize use of
the full data set. Our absolute calibration is based on observations of Uranus.
To verify the calibration and test the fidelity of our map at large angular
scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP
power spectrum from 250 < ell < 1150. The power beyond the Silk damping tail of
the CMB is consistent with models of the emission from point sources. We
quantify the contribution of SZ clusters to the power spectrum by fitting to a
model normalized at sigma8 = 0.8. We constrain the model's amplitude ASZ < 1.63
(95% CL). If interpreted as a measurement of sigma8, this implies sigma8^SZ <
0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly
to a 6-parameter LCDM model plus terms for point sources and the SZ effect is
consistent with these results.Comment: 15 pages, 8 figures. Accepted for publication in Ap
Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements
For the first time, measurements of the cosmic microwave background radiation
(CMB) alone favor cosmologies with dark energy over models without dark
energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing
deflection power spectrum from the Atacama Cosmology Telescope with temperature
and polarization power spectra from the Wilkinson Microwave Anisotropy Probe.
The lensing data break the geometric degeneracy of different cosmological
models with similar CMB temperature power spectra. Our CMB-only measurement of
the dark energy density confirms other measurements from
supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates
the power of CMB lensing as a new cosmological tool.Comment: 4 pages, 3 figures; replaced with version accepted by Physical Review
Letters, added sentence on models with non-standard primordial power spectr
- …