18,956 research outputs found

    Logic circuit detects both present and missing negative pulses in superimposed wave trains

    Get PDF
    Pulse divide and determination network provides a logical determination of pulse presence within a data train. The network uses digital logic circuitry to divide positive and negative pulses, to shape the separated pulses, and to determine, by means of coincidence logic, if negative pulses are missing from the pulse train

    Development of a thermal storage module using modified anhydrous sodium hydroxide

    Get PDF
    The laboratory scale testing of a modified anhydrous NaOH latent heat storage concept for small solar thermal power systems such as total energy systems utilizing organic Rankine systems is discussed. A diagnostic test on the thermal energy storage module and an investigation of alternative heat transfer fluids and heat exchange concepts are specifically addressed. A previously developed computer simulation model is modified to predict the performance of the module in a solar total energy system environment. In addition, the computer model is expanded to investigate parametrically the incorporation of a second heat exchange inside the module which will vaporize and superheat the Rankine cycle power fluid

    Large amplitude acoustic excitation of swirling turbulent jets

    Get PDF
    A swirling jet with a swirl number of S = 0.12 is exited by plane acoustic waves at various Strouhal numbers (St = fD/U sub alpha). The maximum forcing amplitude of excitation was at 6.88 percent of the time-mean axial velocity at a Strouhal number of St = 0.39. The maximum time-mean tangential and axial velocities at the nozzle exit were 18 and 84 m/sec respectively. It was observed that the swirling jet was excitable by plane acoustic waves and the preferred Strouhal number based on the nozzle diameter and exit axial velocity of the jet was about 0.39. As a result of excitation at this frequency, the time-mean axial velocity decayed faster along the jet centerline, reaching about 89 percent of its unexcited value at x/D = 9. Also the half velocity radius and momentum thichness, at 7 nozzle diameters downstream, increased by 13.2 and 5.8 percent respectively, indicating more jet spread and enhanced mixing. To our knowledge, this is the first reported experimental data indicating any mixing enhancement of swirling jets by acoustic excitation

    Effect of initial tangential velocity distribution on the mean evolution of a swirling turbulent free jet

    Get PDF
    An existing cold jet facility at NASA-Lewis was modified to produce swirling flows with controllable initial tangential velocity distribution. Distinctly different swirl velocity profiles were produced, and their effects on jet mixing characteristics were measured downstream of an 11.43 cm diameter convergent nozzle. It was experimentally shown that in the near field of a swirling turbulent jet, the mean velocity field strongly depends on the initial swirl profile. Two extreme tangential velocity distributions were produced. The two jets shared approximately the same initial mass flow rate of 5.9 kg/s, mass averaged axial Mach number and swirl number. Mean centerline velocity decay characteristics of the solid body rotation jet flow exhibited classical decay features of a swirling jet with S = 0.48 reported in the literature. It is concluded that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field

    Controlled excitation of a cold turbulent swirling free jet

    Get PDF
    Experimental results from acoustic excitation of a cold free turbulent jet with and without swirl are presented. A flow with a swirl number of 0.35 (i.e., moderate swirl) is excited internally by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak rms amplitude, and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4. So far no change in the mean velocity components of the swirling jet is observed as a result of excitation

    Development of a phase-change thermal storage system using modified anhydrous sodium hydroxide for solar electric power generation

    Get PDF
    A thermal storage system for use in solar power electricity generation was investigated analytically and experimentally. The thermal storage medium is principally anhydrous NaOH with 8% NaNO3 and 0.2% MnO2. Heat is charged into storage at 584 K and discharged from storage at 582 K by Therminol-66. Physical and thermophysical properties of the storage medium were measured. A mathematical simulation and computer program describing the operation of the system were developed. A 1/10 scale model of a system capable of storing and delivering 3.1 x 10 to the 6th power kJ of heat was designed, built, and tested. Tests included steady state charging, discharging, idling, and charge-discharge conditions simulating a solar daily cycle. Experimental data and computer-predicted results are correlated. A reference design including cost estimates of the full-size system was developed

    Preliminary analysis of space mission applications for electromagnetic launchers

    Get PDF
    The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators

    Wheat yield forecasts using LANDSAT data

    Get PDF
    Several considerations of winter wheat yield prediction using LANDSAT data were discussed. In addition, a simple technique which permits direct early season forecasts of wheat production was described
    • …
    corecore