6,955 research outputs found

    Surface passivation of c-Si by atmospheric pressure chemical vapor deposition of Al2O3

    No full text
    Atmospheric pressure chemical vapor deposition of Al₂O₃ is shown to provide excellent passivation of crystalline silicon surfaces.Surface passivation,permittivity, and refractive index are investigated before and after annealing for deposition temperatures between 330 and 520 °C. Deposition temperatures >440 °C result in the best passivation, due to both a large negative fixed charge density (∼2 × 10¹² cm⁻²) and a relatively low interface defect density (∼1 × 10¹¹ eV⁻¹ cm⁻²), with or without an anneal. The influence of deposition temperature on film properties is found to persist after subsequent heat treatment. Correlations between surface passivation properties and the permittivity are discussed

    On effective surface recombination parameters

    No full text
    This paper examines two effective surface recombination parameters: the effective surface recombination velocity Seff and the surface saturation current density J0 s . The dependence of Seff and J0 s on surface charge Q, surface dopant concentration Ns , and interface parameters is derived. It is shown that for crystalline silicon at 300 K in low-injection, Seff is independent of Ns only when Q²/Ns   1.5 × 10⁷ cm for accumulation and Q¹˙⁸⁵ /Ns  > 1.5 × 10⁶ cm for inversion. These conditions are commonly satisfied in undiffused wafers but rarely in diffused wafers. We conclude that for undiffused silicon, J0 s is superior to the conventional Seff as a metric for quantifying the surface passivation, whereas for diffused silicon, the merit in using J0 s or Seff (or neither) depends on the sample. Experimental examples are given that illustrate the merits and flaws of J0 s and Seff

    Magnetic suspension and balance system advanced study

    Get PDF
    An improved compact design for a superconducting magnetic suspension and balance system for an 8 ft. x 8 ft. transonic wind tunnel is developed. The original design of an MSBS in NASA Cr-3802 utilized 14 external superconductive coils and a superconductive solenoid in the airplane test model suspended in a wind tunnel. The improvements are in the following areas: test model solenoid options, dynamic force limits on the model, magnet cooling options, structure and cryogenic designs, power supply specifications, and cost and performance evaluations. The improvements are: MSBS cost reduction of 28%, weight; reduction of 43%, magnet system ampere-meter reduction of 38%, helium liquifier capacity reduction by 33%, magnet system stored energy reduction by 55%, AC loss to liquid helium reduced by 76%, system power supply reduced by 68%, test coil pole strength increased by 19%, wing magnetization increased by 40%, and control frequency limit increased by 200% from 10 Hz to 30 Hz. The improvements are due to: magnetic holmium coil forms in the test model, better rare earth permanent magnets in the wings, fiberglass-epoxy structure replacing stainless steel, better coil configuration, and new saddle roll coil design

    Multi-site mean-field theory for cold bosonic atoms in optical lattices

    Full text link
    We present a detailed derivation of a multi-site mean-field theory (MSMFT) used to describe the Mott-insulator to superfluid transition of bosonic atoms in optical lattices. The approach is based on partitioning the lattice into small clusters which are decoupled by means of a mean field approximation. This approximation invokes local superfluid order parameters defined for each of the boundary sites of the cluster. The resulting MSMFT grand potential has a non-trivial topology as a function of the various order parameters. An understanding of this topology provides two different criteria for the determination of the Mott insulator superfluid phase boundaries. We apply this formalism to dd-dimensional hypercubic lattices in one, two and three dimensions, and demonstrate the improvement in the estimation of the phase boundaries when MSMFT is utilized for increasingly larger clusters, with the best quantitative agreement found for d=3d=3. The MSMFT is then used to examine a linear dimer chain in which the on-site energies within the dimer have an energy separation of Δ\Delta. This system has a complicated phase diagram within the parameter space of the model, with many distinct Mott phases separated by superfluid regions.Comment: 30 pages, 23 figures, accepted for publication in Phys. Rev.

    Repulsive force support system feasibility study

    Get PDF
    A new concept in magnetic levitation and control is introduced for levitation above a plane. A set of five vertical solenoid magnets mounted flush below the plane supports and controls the model in five degrees of freedom. The compact system of levitation coils is contained in a space 2.4 m (96 in) diameter by 1 m (40 in) deep with the top of the levitation system 0.9 m (36 in) below the center line of the suspended model. The levitated model has a permanent magnet core held in position by the five parallel superconductive solenoids symmetrically located in a circle. The control and positioning system continuously corrects for model position in five dimensions using computer current pulses superimposed on the levitation coil base currents. The conceptual designs include: superconductive and Nd-Fe-B permanent magnet model cores and levitation solenoids of either superconductive, cryoresistive, or room temperature windings

    Cost-effective use of liquid nitrogen in cryogenic wind tunnels, phase 2

    Get PDF
    Cryogenic seal tests were performed and Rulon A was selected for the subject nutating positive displacement expander. A four-chamber expander was designed and fabricated. A nitrogen reliquefier flow system was also designed and constructed for testing the cold expander. Initial tests were unsatisfactory because of high internal friction attributed to nutating Rulon inlet and outlet valve plates. Replacement of the nutating valves with cam-actuated poppet valves improved performance. However, no net nitrogen reliquefaction was achieved due to high internal friction. Computer software was developed for accurate calculation of nitrogen reliquefaction from a system such as that proposed. These calculations indicated that practical reliquefaction rates of 15 to 19 percent could be obtained. Due to mechanical problems, the nutating expander did not demonstrate its feasibility nor that of the system. It was concluded that redesign and testing of a smaller nutating expander was required to prove concept feasibility

    Magnetic suspension and balance system study

    Get PDF
    A compact design for a superconducting magnetic suspension and balance system is developed for a 8 ft. x 8 ft. transonic wind tunnel. The main features of the design are: a compact superconducting solenoid in the suspended airplane model; permanent magnet wings; one common liquid helium dewar for all superconducting coils; efficient new race track coils for roll torques; use of established 11 kA cryostable AC conductor; acceptable AC losses during 10 Hz control even with all steel structure; and a 560 liter/hour helium liquefier. Considerable design simplicity, reduced magnet weights, and reduced heat leak results from using one common dewar which eliminates most heavy steel structure between coils and the suspended model. Operational availability is thought to approach 100% for such magnet systems. The weight and cost of the magnet system is approximately one-third that of previous less compact designs

    “I wish I’d told them”: a qualitative study examining the unmet psychosexual needs of prostate cancer patients during follow-up after treatment

    Get PDF
    <b>Objective</b> To gain insight into patients' experiences of follow-up care after treatment for prostate cancer and identify unmet psychosexual needs.<p></p> <b>Methods</b> Semi-structured interviews were conducted with a purposive sample of 35 patients aged 59-82 from three UK regions. Partners were included in 18 interviews. Data were analyzed using constant comparison. <p></p> <b>Results</b> (1) Psychosexual problems gained importance over time, (2) men felt they were rarely invited to discuss psychosexual side effects within follow-up appointments and lack of rapport with health care professionals made it difficult to raise problems themselves, (3) problems were sometimes concealed or accepted and professionals' attempts to explore potential difficulties were resisted by some, and (4) older patients were too embarrassed to raise psychosexual concerns as they felt they would be considered 'too old' to be worried about the loss of sexual function.<p></p> <b>Conclusion</b> Men with prostate cancer, even the very elderly, have psychosexual issues for variable times after diagnosis. These are not currently always addressed at the appropriate time for the patient.Practice implications Assessments of psychosexual problems should take place throughout the follow-up period, and not only at the time of initial treatment. Further research examining greater willingness or reluctance to engage with psychosexual interventions may be particularly helpful in designing future intervention

    Investigation of microwave backscatter from the air-sea interface

    Get PDF
    Monitoring the ocean surface winds and mean ocean surface level is essential for improving our knowledge of the climate. Two instruments that may provide us with this information are satellite-based scatterometers and altimeters. However, these instruments measure the backscatter characteristics of the ocean surface from which other physical parameters, such as the wind speed or ocean surface height, are derived. To improve the algorithms or models that relate the electromagnetic backscatter to the desired physical parameters, the University of Massachusetts (UMass) Microwave Remote Sensing Laboratory (MIRSL) designed and fabricated three airborne scatterometers: a C-band scatterometer (CSCAT), Ku-band scatterometer (KUSCAT) and C/Ku-band scatterometer (EMBR). One or more of these instruments participated in the Electromagnetic Bias experiment (EM Bias), Shelf Edge Exchange Processes experiment (SEEP), Surface Wave Dynamics Experiment (SWADE), Southern Ocean Wave Experiment (SOWEX), Hurricane Tina research flights, Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE), and Ladir In-space Technology Experiment (LITE). This document describes the three scatterometers, summarizes our measurement campaigns and major contributions to the scientific and engineering communities, lists the publications that resulted, and presents the degrees earned under the support of this NASA grant

    Other Challenges in the Development of the Orbiter Environmental Control Hardware

    Get PDF
    Development of the Space Shuttle orbiter environmental control and life support system (ECLSS) included the identification and resolution of several interesting problems in several systems. Some of these problems occurred late in the program, including the flight phase. Problems and solutions related to the ammonia boiler system (ABS), smoke detector, water/hydrogen separator, and waste collector system (WCS) are addressed
    corecore