2,199 research outputs found

    Theory and observations of ice particle evolution in cirrus using Doppler radar: evidence for aggregation

    Get PDF
    Vertically pointing Doppler radar has been used to study the evolution of ice particles as they sediment through a cirrus cloud. The measured Doppler fall speeds, together with radar-derived estimates for the altitude of cloud top, are used to estimate a characteristic fall time tc for the `average' ice particle. The change in radar reflectivity Z is studied as a function of tc, and is found to increase exponentially with fall time. We use the idea of dynamically scaling particle size distributions to show that this behaviour implies exponential growth of the average particle size, and argue that this exponential growth is a signature of ice crystal aggregation.Comment: accepted to Geophysical Research Letter

    HST/ACS Images of the GG Tauri Circumbinary Disk

    Full text link
    Hubble Space Telescope Advanced Camera for Surveys images of the young binary GG Tauri and its circumbinary disk in V and I bandpasses were obtained in 2002 and are the most detailed of this system to date. The confirm features previously seen in the disk including: a "gap" apparently caused by shadowing from circumstellar material; an asymmetrical distribution of light about the line of sight on the near edge of the disk; enhanced brightness along the near edge of the disk due to forward scattering; and a compact reflection nebula near the secondary star. New features are seen in the ACS images: two short filaments along the disk; localized but strong variations in disk intensity ("gaplets"); and a "spur" or filament extending from the reflection nebulosity near the secondary. The back side of the disk is detected in the V band for the first time. The disk appears redder than the combined light from the stars, which may be explained by a varied distribution of grain sizes. The brightness asymmetries along the disk suggest that it is asymmetrically illuminated by the stars due to extinction by nonuniform circumstellar material or the illuminated surface of the disk is warped by tidal effects (or perhaps both). Localized, time-dependent brightness variations in the disk are also seen.Comment: 28 pages, 7 figures, accepted for publication in the Astronomical Journa

    Star Formation at z~6: The UDF-Parallel ACS Fields

    Full text link
    We report on the i-dropouts detected in two exceptionally deep ACS fields (B_{435}, V_{606}, i_{775}, and z_{850} with 10 sigma limits of 28.8, 29.0, 28.5, and 27.8, respectively) taken in parallel with the UDF NICMOS observations. Using an i-z>1.4 cut, we find 30 i-dropouts over 21 arcmin^2 down to z_AB=28.1, or 1.4 i-dropouts arcmin^{-2}, with significant field-to-field variation (as expected from cosmic variance). This extends i-dropout searches some ~0.9^m further down the luminosity function than was possible in the GOODS field, netting a ~7x increase in surface density. An estimate of the size evolution for UV bright objects is obtained by comparing the composite radial flux profile of the bright i-dropouts (z<27.2) with scaled versions of the HDF-N + HDF-S U-dropouts. The best-fit is found with a (1+z)^{-1.57_{-0.53} ^{+0.50}} scaling in size (for fixed luminosity), extending lower redshift (1<z<5) trends to z~6. Adopting this scaling and the brighter i-dropouts from both GOODS fields, we make incompleteness estimates and construct a z~6 LF in the rest-frame continuum UV (~1350 A) over a 3.5 magnitude baseline, finding a shape consistent with that found at lower redshift. To evaluate the evolution in the LF from z~3.8, we make comparisons against different scalings of a lower redshift B-dropout sample. Though a strong degeneracy is found between luminosity and density evolution, our best-fit model scales as (1+z)^{-2.8} in number and (1+z)^0.1 in luminosity, suggesting a rest-frame continuum UV luminosity density at z~6 which is just 0.38_{-0.07} ^{+0.09}x that at z~3.8. Our inclusion of size evolution makes the present estimate lower than previous z~6 estimates.Comment: 5 pages, 5 figures, accepted for publication in the Astrophysical Journal Letters, labelling to the left-hand axis of Figure 4 correcte

    Ellipticals with Kinematically-Distinct Cores: (V-I) Color Images with WFPC2

    Get PDF
    We have analysed HST/WFPC2 F555W and F814W images for fifteen elliptical galaxies with kinematically-distinct cores. For each of them we have derived surface brightness and isophotal parameter profiles in the two bands, color maps, and radial profiles in (V-I). We have detected photometric evidence for faint stellar disks, on scales of a few tens to a few arcseconds, in seven galaxies, namely NGC 1427, 1439, 1700, 4365, 4406, 4494 and 5322. In NGC 1700, the isophotes are slightly boxy at the scale of the counter-rotating component, and disky at larger radii. We find no difference in (V-I) color greater than 0.02 mag between these disks and the surrounding galactic regions. Hence the stellar populations in the kinematically distinct cores are not strongly deviant from the population of the main body. For one galaxy, NGC 4365, the innermost region is bluer than the surrounding regions. This area extends to about 15pc, and contains a luminosity of 2.5x10^6 L⊙_\odot. If interpreted as a stellar population effect, an age difference of ∼\sim 3-4 Gyrs, or an [Fe/H][Fe/H] variation of about 0.2 dex, is derived. The nuclear intensity profiles show a large variety: some galaxies have steep cusp profiles, others have shallow cusps and a ``break radius''. The nuclear cusps of galaxies with kinematically-distinct cores follow the same trends as the nuclei of normal galaxies. We have not been able to identify a unique, qualifying feature in the WFPC2 images which distinguish the galaxies with kinematically distinct cores from the kinematically normal cores. [shortened]Comment: 56 pages, latex, 17 figures; figure 1 available upon request; ApJ, 481 in pres

    Hubble and Spitzer Space Telescope Observations of the Debris Disk around the Nearby K Dwarf HD 92945

    Get PDF
    [ABRIDGED] We present the first resolved images of the debris disk around the nearby K dwarf HD 92945. Our F606W (V) and F814W (I) HST/ACS coronagraphic images reveal an inclined, axisymmetric disk consisting of an inner ring 2".0-3".0 (43-65 AU) from the star and an extended outer disk whose surface brightness declines slowly with increasing radius 3".0-5".1 (65-110 AU) from the star. A precipitous drop in the surface brightness beyond 110 AU suggests that the outer disk is truncated at that distance. The radial surface-density profile is peaked at both the inner ring and the outer edge of the disk. The dust in the outer disk scatters neutrally but isotropically, and it has a low V-band albedo of 0.1. We also present new Spitzer MIPS photometry and IRS spectra of HD 92945. These data reveal no infrared excess from the disk shortward of 30 micron and constrain the width of the 70 micron source to < 180 AU. Assuming the dust comprises compact grains of astronomical silicate with a surface-density profile described by our scattered-light model of the disk, we successfully model the 24-350 micron emission with a minimum grain size of a_min = 4.5 micron and a size distribution proportional to a^-3.7 throughout the disk, but with a maximum grain size of 900 micron in the inner ring and 50 micron in the outer disk. Our observations indicate a total dust mass of ~0.001 M_earth. However, they provide contradictory evidence of the dust's physical characteristics: its neutral V-I color and lack of 24 micron emission imply grains larger than a few microns, but its isotropic scattering and low albedo suggest a large population of submicron-sized grains. The dynamical causes of the disk's morphology are unclear, but recent models of dust creation and transport in the presence of migrating planets indicate an advanced state of planet formation around HD 92945.Comment: 29 pages, 10 figures; to be published in The Astronomical Journa

    The counterrotating core and the black hole mass of IC1459

    Get PDF
    The E3 giant elliptical galaxy IC1459 is the prototypical galaxy with a fast counterrotating stellar core. We obtained one HST/STIS long-slit spectrum along the major axis of this galaxy and CTIO spectra along five position angles. We present self-consistent three-integral axisymmetric models of the stellar kinematics, obtained with Schwarzschild's numerical orbit superposition method. We study the dynamics of the kinematically decoupled core (KDC) in IC1459 and we find it consists of stars that are well-separated from the rest of the galaxy in phase space. The stars in the KDC counterrotate in a disk on orbits that are close to circular. We estimate that the KDC mass is ~0.5% of the total galaxy mass or ~3*10^9 Msun. We estimate the central black hole mass M_BH of IC1459 independently from both its stellar and its gaseous kinematics. Some complications probably explain why we find rather discrepant BH masses with the different methods. The stellar kinematics suggest that M_BH = (2.6 +/- 1.1)*10^9 Msun (3 sigma error). The gas kinematics suggests that M_BH ~ 3.5*10^8 Msun if the gas is assumed to rotate at the circular velocity in a thin disk. If the observed velocity dispersion of the gas is assumed to be gravitational, then M_BH could be as high as ~1.0*10^9 Msun. These different estimates bracket the value M_BH = (1.1 +/- 0.3)*10^9 Msun predicted by the M_BH-sigma relation. It will be an important goal for future studies to assess the reliability of black hole mass determinations with either technique. This is essential if one wants to interpret the correlation between the BH mass and other global galaxy parameters (e.g. velocity dispersion) and in particular the scatter in these correlations (believed to be only ~0.3 dex). [Abridged]Comment: 51 pages, LaTeX with 19 PostScript figures. Revised version, with three new figures and data tables. To appear in The Astrophysical Journal, 578, 2002 October 2

    The Evolution of Early-Type Galaxies in Distant Clusters II: Internal Kinematics of 55 Galaxies in the z=0.33 Cluster CL1358+62

    Full text link
    We define a large sample of galaxies for use in a study of the fundamental plane in the intermediate redshift cluster CL1358+62 at z=0.33z=0.33. We have analyzed high resolution spectra for 55 members of the cluster. The data were acquired with the Low Resolution Imaging Spectrograph on the Keck I 10m telescope. A new algorithm for measuring velocity dispersions is presented and used to measure the internal kinematics of the galaxies. This algorithm has been tested against the Fourier Fitting method so the data presented here can be compared with those measured previously in nearby galaxies. We have measured central velocity dispersions suitable for use in a fundamental plane analysis. The data have high S/NS/N and the resulting random errors on the dispersions are very low, typically <5<5%. Uncertainties due to mismatch of the stellar templates has been minimized through several tests and the total systematic error is of order \about 5%. Good seeing enabled us to measure velocity dispersion profiles and rotation curves for most of the sample and although a large fraction of the galaxies display a high level of rotation, the gradients of the total second moment of the kinematics are all very regular and similar to those in nearby galaxies. We conclude that the data therefore can be reliably corrected for aperture size in a manner consistent with nearby galaxy samples.Comment: 30 pages, 13 figures; for publication in the ApJ (accepted on 23 August 1999
    • …
    corecore