1,356 research outputs found

    Collective excitation of a Bose-Einstein condensate by modulation of the atomic scattering length

    Get PDF
    We excite the lowest-lying quadrupole mode of a Bose-Einstein condensate by modulating the atomic scattering length via a Feshbach resonance. Excitation occurs at various modulation frequencies, and resonances located at the natural quadrupole frequency of the condensate and at the first harmonic are observed. We also investigate the amplitude of the excited mode as a function of modulation depth. Numerical simulations based on a variational calculation agree with our experimental results and provide insight into the observed behavior.Comment: Submitted to PR

    Generation of vortices and observation of Quantum Turbulence in an oscillating Bose-Einstein Condensate

    Full text link
    We report on the experimental observation of vortex formation and production of tangled vortex distribution in an atomic BEC of Rb-87 atoms submitted to an external oscillatory perturbation. The oscillatory perturbations start by exciting quadrupolar and scissors modes of the condensate. Then regular vortices are observed finally evolving to a vortex tangle configuration. The vortex tangle is a signature of the presence of a turbulent regime in the cloud. We also show that this turbulent cloud has suppression of the aspect ratio inversion typically observed in quantum degenerate bosonic gases during free expansion.Comment: to appear in JLTP - QFS 200

    Three-vortex configurations in trapped Bose-Einstein condensates

    Full text link
    We report on the creation of three-vortex clusters in a 87Rb^{87}Rb Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulation, so that we are able to create several types of vortex clusters using the same mechanism. The three-vortex configurations are dominated by two types, namely, an equilateral-triangle arrangement and a linear arrangement. We interpret these most stable configurations respectively as three vortices with the same circulation, and as a vortex-antivortex-vortex cluster. The linear configurations are very likely the first experimental signatures of predicted stationary vortex clusters.Comment: 4 pages, 4 figure

    Route to turbulence in a trapped Bose-Einstein condensate

    Full text link
    We have studied a Bose-Einstein condensate of 87Rb^{87}Rb atoms under an oscillatory excitation. For a fixed frequency of excitation, we have explored how the values of amplitude and time of excitation must be combined in order to produce quantum turbulence in the condensate. Depending on the combination of these parameters different behaviors are observed in the sample. For the lowest values of time and amplitude of excitation, we observe a bending of the main axis of the cloud. Increasing the amplitude of excitation we observe an increasing number of vortices. The vortex state can evolve into the turbulent regime if the parameters of excitation are driven up to a certain set of combinations. If the value of the parameters of these combinations is exceeded, all vorticity disappears and the condensate enters into a different regime which we have identified as the granular phase. Our results are summarized in a diagram of amplitude versus time of excitation in which the different structures can be identified. We also present numerical simulations of the Gross-Pitaevskii equation which support our observations.Comment: 6 pages, 3 figure
    • …
    corecore