13,661 research outputs found

    Consequences of a Change in the Galactic Environment of the Sun

    Get PDF
    The interaction of the heliosphere with interstellar clouds has attracted interest since the late 1920's, both with a view to explaining apparent quasi-periodic climate "catastrophes" as well as periodic mass extinctions. Until recently, however, models describing the solar wind - local interstellar medium (LISM) interaction self-consistently had not been developed. Here, we describe the results of a two-dimensional (2D) simulation of the interaction between the heliosphere and an interstellar cloud with the same properties as currently, except that the neutral H density is increased from the present value of n(H) ~ 0.2 cm^-3 to 10 cm^-3. The mutual interaction of interstellar neutral hydrogen and plasma is included. The heliospheric cavity is reduced considerably in size (approximately 10 - 14 AU to the termination shock in the upstream direction) and is highly dynamical. The interplanetary environment at the orbit of the Earth changes markedly, with the density of interstellar H increasing to ~2 cm^-3. The termination shock itself experiences periods where it disappears, reforms and disappears again. Considerable mixing of the shocked solar wind and LISM occurs due to Rayleigh-Taylor-like instabilities at the nose, driven by ion-neutral friction. Implications for two anomalously high concentrations of 10Be found in Antarctic ice cores 33 kya and 60 kya, and the absence of prior similar events, are discussed in terms of density enhancements in the surrounding interstellar cloud. The calculation presented here supports past speculation that the galactic environment of the Sun moderates the interplanetary environment at the orbit of the Earth, and possibly also the terrestrial climate.Comment: 23 pages, 2 color plates (jpg), 3 figures (eps

    Is the Sun Embedded in a Typical Interstellar Cloud?

    Full text link
    The physical properties and kinematics of the partially ionized interstellar material near the Sun are typical of warm diffuse clouds in the solar vicinity. The interstellar magnetic field at the heliosphere and the kinematics of nearby clouds are naturally explained in terms of the S1 superbubble shell. The interstellar radiation field at the Sun appears to be harder than the field ionizing ambient diffuse gas, which may be a consequence of the low opacity of the tiny cloud surrounding the heliosphere. The spatial context of the Local Bubble is consistent with our location in the Orion spur.Comment: "From the Outer Heliosphere to the Local Bubble", held at International Space Sciences Institute, October 200

    Locality and stability of the cascades of two-dimensional turbulence

    Get PDF
    We investigate and clarify the notion of locality as it pertains to the cascades of two-dimensional turbulence. The mathematical framework underlying our analysis is the infinite system of balance equations that govern the generalized unfused structure functions, first introduced by L'vov and Procaccia. As a point of departure we use a revised version of the system of hypotheses that was proposed by Frisch for three-dimensional turbulence. We show that both the enstrophy cascade and the inverse energy cascade are local in the sense of non-perturbative statistical locality. We also investigate the stability conditions for both cascades. We have shown that statistical stability with respect to forcing applies unconditionally for the inverse energy cascade. For the enstrophy cascade, statistical stability requires large-scale dissipation and a vanishing downscale energy dissipation. A careful discussion of the subtle notion of locality is given at the end of the paper.Comment: v2: 23 pages; 4 figures; minor revisions; resubmitted to Phys. Rev.

    Material studies related to lunar surface exploration. Volume 1 - Lunar soil mechanics and soil properties Final report, 6 Mar. 1967 - 30 Jun. 1968

    Get PDF
    Lunar soil mechanics and properties for structural engineering aspects of lunar spacecraft landings and surface exploratio

    Time-variability in the Interstellar Boundary Conditions of the Heliosphere: Effect of the Solar Journey on the Galactic Cosmic Ray Flux at Earth

    Full text link
    During the solar journey through galactic space, variations in the physical properties of the surrounding interstellar medium (ISM) modify the heliosphere and modulate the flux of galactic cosmic rays (GCR) at the surface of the Earth, with consequences for the terrestrial record of cosmogenic radionuclides. One phenomenon that needs studying is the effect on cosmogenic isotope production of changing anomalous cosmic ray fluxes at Earth due to variable interstellar ionizations. The possible range of interstellar ram pressures and ionization levels in the low density solar environment generate dramatically different possible heliosphere configurations, with a wide range of particle fluxes of interstellar neutrals, their secondary products, and GCRs arriving at Earth. Simple models of the distribution and densities of ISM in the downwind direction give cloud transition timescales that can be directly compared with cosmogenic radionuclide geologic records. Both the interstellar data and cosmogenic radionuclide data are consistent with cloud transitions during the Holocene, with large and assumption-dependent uncertainties. The geomagnetic timeline derived from cosmic ray fluxes at Earth may require adjustment to account for the disappearance of anomalous cosmic rays when the Sun is immersed in ionized gas.Comment: Submitted to Space Sciences Review

    The Velocity Distribution of the Nearest Interstellar Gas

    Full text link
    The bulk flow velocity for the cluster of interstellar cloudlets within about 30 pc of the Sun is determined from optical and ultraviolet absorption line data, after omitting from the sample stars with circumstellar disks or variable emission lines and the active variable HR 1099. Ninety-six velocity components towards the remaining 60 stars yield a streaming velocity through the local standard of rest of -17.0+/-4.6 km/s, with an upstream direction of l=2.3 deg, b=-5.2 deg (using Hipparcos values for the solar apex motion). The velocity dispersion of the interstellar matter (ISM) within 30 pc is consistent with that of nearby diffuse clouds, but present statistics are inadequate to distinguish between a Gaussian or exponential distribution about the bulk flow velocity. The upstream direction of the bulk flow vector suggests an origin associated with the Loop I supernova remnant. Groupings of component velocities by region are seen, indicating regional departures from the bulk flow velocity or possibly separate clouds. The absorption components from the cloudlet feeding ISM into the solar system form one of the regional features. The nominal gradient between the velocities of upstream and downstream gas may be an artifact of the Sun's location near the edge of the local cloud complex. The Sun may emerge from the surrounding gas-patch within several thousand years.Comment: Typographical errors corrected; Five tables, seven figures; Astrophysical Journal, in pres
    • …
    corecore