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PREFACE 

This report presents i n  i t s  four volumes the r e s u l t s  of s tud ies  

conducted during the period March 6 ,  1967 -June 30, 1968, under NASA 

research cont rac t  NSR 05-003-189, "Materials Studies Related t o  Lunar 

surface Exploration." This study w a s  sponsored by the  Advanced Lunar 

Missions Directorate, NASA Headquarters, and w a s  under the  technical  

cognizance of D r .  N. C. Costes, Space Sciences Laboratory, 

George C. Marshall Space F l ight  Center. 

This repor t  r e f l e c t s  t h e  combined e f f o r t  of f i ve  facul ty  investiga- 

t o r s  and a f u l l  t i m e  p ro jec t  manager/engineer a s s i s t ed  by s i x  graduate 

research a s s i s t an t s ,  representing several  engineering and s c i e n t i f i c  

d i sc ip l ines  per t inent  t o  study of lunar surface material propert ies .  

James K. Mitchell ,  Professor of  C i v i l  Engineering, served as Principal  

Invest igator  and w a s  responsible for  those phases o f  the work concerned 

with problems r e l a t ing  t o  lunar s o i l  mechanics and the engineering 

properties of lunar so i l s .  Co-investigators were Ian C. Carmichael, 

Professor of  Geology, i n  charge of geological s tudies;  Joseph Frisch,  

Professor of  Mechanical Engineering, who w a s  responsible fo r  analysis  of  

f r i c t i o n  and adhesion problems and the t e s t i n g  of materials under high- 

vacuum conditions; Richard E. Goodman, Associate Professor of Geological 

Engineering, who w a s  concerned with the engineering geology and rock 

mechanics aspects of the  lunar surface; and Paul A. Witherspoon, 

Professor of Geological Engineering, who conducted s tudies  re la ted  t o  

thermal and permeability measurements on the  lunar surface.  

Francois E.  Heuz6, Assis tant  Spec ia l i s t ,  served as pro jec t  manager and 

contributed t o  s tud ies  i n  the areas of rock mechanics and engineering 

geology e 
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INTRODUCTION 

I. OBJECTIVES 

It i s  axiomatic t h a t ,  among the myriad of technical  and s c i e n t i f i c  

fac tors  t h a t  must be considered i n  the  lunar exploration program, the  

nature of lunar  so i l  and rock surface materials is  of prime importance 

i n  the design of  spacecraft  landing systems, the design of surface 

mobility systems, the  design of experiments t o  be conducted on the  lunar 

surface,  mission planning, and, ult imately,  t o  mission success. With- 

ou t  spec i f ic  knowledge of the mechanical properties of lunar s o i l s ,  

designers and mission planners have no choice but t o  adopt ultraconser- 

vative designs and procedures i n  an e f f o r t  t o  insure astronaut sa fe ty .  

Thus it i s  of paramount importance t h a t  as much spec i f ic  information as 

possible about lunar surface material propert ies  be obtained p r io r  t o  

the f i r s t  manned lunar mission, and t h a t  planning and design options fo r  

fur ther  missions remain open thereaf te r  i n  order t o  accommodate changes 

as more and more spec i f ic  data  become avai lable .  

The study described i n  t h i s  report  w a s  i n i t i a t e d  i n  an e f f o r t  t o  

f ine  both the surface material re la ted  engineering problems 

and the relevant  propert ies  of the materials themselves. Information 

developed as a r e s u l t  of t h i s  e f f o r t  w a s  then u t i l i z e d  i n  spec i f i c  

s tud ies  of  problems considered t o  be of c r i t i c a l  importance and for the  

development of  analysis  and t e s t ing  methods t h a t  appear pa r t i cu la r ly  

promising f o r  the  study of lunar surface propert ies  by both remote and 

t a c t i l e  means. 

Specific objectives t h a t  w e r e  se t  a t  the  onset of the  study w e r e :  

1. To define geological and engineering problems associated with 

on-si te  lunar exploartion dependent on knowledge of so i l  and 

rock properties fo r  solut ion.  

2. To c r i t i c a l l y  evaluate current  knowledge concerning lunar 

surface materials, t h e i r  propert ies ,  and t h e i r  re la t ionships  

t o  problems associated with on-site lunar exploration, and t o  

s e l e c t  reasonable models €or lunar surface conditions. 

V i  



3.. To make preliminary formulations of desirable on-site soil and 

rock mechanics studies for extended lunar exploration and to 

make recommendations as to appropriate apparatus and required 

astronaut skills for performance of such investigations. 

4. To undertake preliminary studies for development of rock testing 

devices for use in a borehole on the lunar surface for the 

determination of the stress-strain characteristics of rocks. 

5 .  To review friction and adhesion problems and to make recomenda- 

tions for improved design of existing apparatus for determina- 

tion of frictional and adhesive characteristics of different 

metallic and nonmetallic materials under high vacuum and at 

high and low temperatures. 

6. To make recommendations and cost estimates for the design of 

apparatus for measuring silicate mineral solubility and viscosity 

at high temperatures and pressures and for determining the 

distribution of silicates between gas and liquid phases. 

7. To review critically theories for the origin of the moon and to 

consider logical sequences for investigations to be carried out 

on the lunar surface for most efficient determination of 

composition, structure and history of the moon. 

The results of studies of this type are intended to aid in attain- 

ment of the following longer range goals: 

1. Development of capability for predicting, at least in a semi- 

quantitative manner, soil conditions at any point on the moon 

on the basis of remote measurements, 

2. Development of capability for detailed quantitative determina- 

tion of soil and rock properties at any chosen site where 

scientific or engineering work is contemplated. 

3 .  Development of methods of analysis suitable for solution of 

soil and rock mechanics problems on the moon. 

4. Utilization of the information obtained, both as an aid in the 

interpretation of geologic processes on the moon and as a means 

for developing improved understanding of soil and rock behavior 

on the earth, 
Uii 



11, SCOPE OF WORK AND OUTLINE OF FINAL REPORT 

A s  work proceeded on each of these objectives several  spec i f i c  

topics  emerged as pa r t i cu la r ly  needing more de ta i led  study, and, 

consequently, during the later phases of the  study e f f o r t s  w e r e  

in tensively d i rec ted  a t  these topics ,  Thus the trend has been from 

s tudies  of a braod and general  nature within a pa r t i cu la r  area t o  the  

i so l a t ion  of spec i f i c  problems and more de ta i led  s tudies  of these 

problems. This is re f lec ted  i n  the general  ou t l ine  of the 4 volumes 

cons t i tu t ing  t h i s  repor t ,  as shown below: 

VOLUME I 

LUNAR SOIL MECHANICS AND SOIL PROPERTIES 

Chapter 1. Lunar So i l  and Rock Problems and Considerations i n  
Their Solution 

(James K. Mitchell) 

Chapter 2. Engineering Properties of Lunar So i l s  

(James K. Mitchell and Scot t  S. Smith) 

Chapter 3 ,  Materials Properties Evaluations from Boulder Tracks 
on the Lunar Surface 

(James K. Mitchell and Scot t  S. Smith) 

Chapter 4. Impact Records as a Source of Lunar Surface Material 
Property D a t a  

(James K. Mitchell, Donald W. Quigley, and Scot t  S. Smith) 

Chapter 5. Lunar Stratigraphy as Revealed by Crater Morphology 

(Francois E. Heuz6 and Richard E. Goodman) 

Chapter 6. Geochemical Studies 

(I. S.  E. Carmichael and J. Nicholls) 

Appendix. Library of Lunar Surface Exploration Materials 

(Francois E. Heuz6) 

Viii 



VOLUME I1 

APPLICATION OF GEOPHYSICAL AND GEOTECHNICAL METHODS 

TO LUNAR SITES EXPLORATION 

Chapter 1. The Application of Geophysical Methods to Lunar Site 
Studies 

Francois E. Heuzg) 
(Richard E. Goodman, Jan J. Roggeveen, and 

Chapter 2. Investigation of Rock Behavior and Strength 

(Francois E. Heuz6 and Richard E. Goodman) 

Chapter 3.  The Measurement of Stresses in Rock 

(Francois E. Heuzg and Richard E. Goodman) 

Appendix. Data Interpretation from Stress Measurement 

Chapter 4. The Measurement of Rock Deformability in Bore Holes 

(Richard E. Goodman and Francois E. Heuz6) 

VOLUME I11 

PReLIMINARY STUDIES ON SOIL/ROCK ENGINEERING PROBLEMS 

FELATED TO LUNAR EXPLORATION 

Chapter 1. Trafficability 

(James K. Mitchell, Scott S. Smith, and 
Donald W. Quigley) 

Appendix 1-A. Recent Trafficability and Mobility 
Literature 

Appendix 1-B. Determination of Vehicle Mobility Index 
for Use in Army Mobility Branch (WES) 
Method of Trafficability Analysis 

Chapter 2. Friction and Adhesion in Ultrahigh Vacuum as Related 
to Lunar Surface Explorations 

(J. Frisch and U. Chang) 

Appendix. Design of Rolling Friction Experimental 
Apparatus 

iX 



VOLUME 111 (con't.) 

Chapter 3.  Utilization of Lunar  Soils for Shielding Against Radiations, 
Meteoroid Bombardment, and Temperature Gradients 

(Francois E. Hew6 and Richard E. Goodman) 

VOLUME Iv 

PRELIMINARY STUDIES FOR THE DESIGN OF ENGINEERING PROBES 

Chapter 1. The NX-Borehole Jack for Rock Deformability Measurements 

(Richard E. Goodman, Tranh K. Van, and Francois E. Heuz6) 

Appendix. Analytical Solution for Unidirectional Loading 
of Bore Hole Wall 

Chapter 2. Permeability and Thermal Conductivity Studies for 
Lunar Surface Probes 

(Paul A. Witherspoon and David F. Katz) 
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CHAPTER 1 

THE NX-BOREHOLE JACK FOR ROCK DEFORMABILITY MEASUREPlENTS 

(Richard E. Goodman, Tranh K. Van, and Francois E. Heuz6) 

I e INTRODUCTION 

For rational design of foundations one must determine the expectable 

displacements. This requires knowledge of the deformation-pressure 

relationships for all the materials in the region of influence of the 

structure. It is the practice on earth, to obtain a complement of samples 

from the full volume o f  affected soils and rocks and to measure their 

properties in laboratory consolidation or compression tests. A developing 

but competing art makes it possible on earth to measure the compressibility 

directly in the field. On the moon it is not so convenient to return 

samples for meaningful deformability tests as the environment and structural 

system are difficult to preserve. 

be invoked. 

Therefore the in situ testing art must 

As described in Volume 2,  Chapter 4, a number of instruments have 
been built to measure rock and soil deformability in boreholes. These 

were grouped under the headings dilatometers, jacks, and penetrometers. 

It is proposed that such devices be considered for investigation of sites 

on the moon. The following discussion explains how data from such tests 

can be used to determine the deformability properties of the soil or rock. 

Particular attention is given to the borehole jack developed by 

Goodman et al.,'1968, as it seems well suited for the purposes and constraints 

of the lunar program. This instrument is presented in Figures la to Id. 

11. INTERPFSTATION OF FIELD DATA 

The result of deformability testing in a borehole of diameter d is 

a curve of applied pressure Q versus diametral deformation u 

the load, maintaining the load for extended periods, and using other test 

procedures common in rock engineering studies, valuable qualitative con- 

clusions can be drawn about the rock properties in addition to quantita- 

tive information. If the Poisson's ratio of the rock (V) is assumed or 

By cycling d' 
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FIGURE l - l a e  NX BOREHOLE PLATE BEARING 
TEST DEVICE. 

FIGURE l - l b *  DEVICE DISASSEMBLED. 
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measured, a borehole dilatometer or jack gives an expression for Young's 

modulus from the ratio of AQ to AU /d for each load increment as discussed 
below. The selection of final values of deformation modulus for design 

purpose, as for other in situ tests, will make use of engineering 

judgment based in part on results obtained from all tests performed in a 

comprehensive testing program. An example of this is given in Table 1-4. 

d 

A. Borehole Dilatometer Data 

An expression for E is easily derived from the thick walled 

cylinder formulas (Jaeger, 1962) by solving for the displacements under 

internal pressure Q when the outer radius goes to infinity and the outer 

pressure is zero, This gives: 

E -  - --4L (1 + w) 
A'd/d 

Even if the rock mass is under initial stress, this approach is still 

valid rtnless the rock is highly nonlinear as the displacements on 

pressuring the dilatometer are due only to the applied load. E will be 

computed as a tangent modulus along the (AQ, Au) curve (see Figure 1-91. 
As in any loading test, the lowest values for E are generally obtained 

at the lowest stress levels and the highest along the linear portion of 

the load deformation curve at the highest stress level when no fracture 

or yielding takes place. 

B. Borehole Jack Data 

Quantitative interpretation of measurements made with borehole 

jacks involves a more difficult formula because the loading is not 

continuous over the circumference of the borehole wall. Further, except 

in the case of Jaeger and Cook's Quadrantal curved jacks (Jaeger, Cook, 

19631, the force is directed at an inclination to the normal to the 

borehole wall at all points except the line of symmetry. 

condition to be satisfied is one of constant displacement rather than 

constant pressure. The steel plates are much stiffer than the rock and 

will be driven out with very little bending. 

not be uniform and pressure readings will represent an average value over 

The boundary 

The boundary pressure will 
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the steel-rock boundary. However, as w i l l  be shown, constant displacement 

solut ions are very l i t t l e  d i f f e r e n t  f r o m  constant pressure solut ions i n  

t h i s  c l a s s  of problems i f  the average pressure and average displacement 

over the plate-rock contact area are used i n  computations. 

1, Radial pressure over diametr ical ly  opposed sec tors  of 

the borehole w a l l .  The solut ion t o  t h i s  problem w a s  obtained by Jaeger 

and Cook (1963) using the complex var iable  method. The complete der ivat ion 

is given i n  the Appendix. 

dis tance from the center l i n e  of the plate extends from + 
(Figure 1-3a) is given by 

The r ad ia l  displacement (ur) a t  an angular 

t o  - 6 

The average displacement of p l a t e s  of given angle 2 6 may be obtained by 

integrat ion.  

jacks with r a d i a l  applied pressure; as ye t  there  are none. This formula 

should not be used t o  i n t e r p r e t  uniaxial ly  act ing borehole jacks. 

The resu l t ing  formula fo r  E would only apply i n  the case of 

2. Unidirectional pressure over diametr ical ly  opposed sec tors  

of the borehole w a l l .  This is theore t ica l ly  the problem posed by the 

use of uniaxial ly  act ing borehole jacks. A unidirect ional  constant 

pressure boundary condition from - 6 t o  + B may be resolved i n t o  a constant 

r a d i a l  boundary pressure over the borehole sect ion of width 2 8,  and shear 

and r ad ia l  pressures d i s t r ibu ted  s inusoidal ly  over the width 2 as depicted 

i n  the Appendix. In  the course of t h i s  invest igat ion,  a solut ion was 

obtained f o r  the s inusoidal ly  varying shear and normal force on the  w a l l  

(Appendix). Superposition with Jaeger 's  solut ion (Equation 1-2) y ie lds  

the following formula f o r  the r ad ia l  displacement of a point  on the wal l  

a t  6 from the  l i n e  of symmetry. 
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The average displacement is found by in tegra t ing  the 

horizontal  displacement over the  v e r t i c a l  component of each are  segment 

i n  contact with the  p l a t e ,  i .e. from - B to  + 6. The r e s u l t ,  shown 

f u l l y  i n  Equation A-1-31, Appendix, may be wr i t ten  

where ALd is  the average diametral dispacement f o r  a given increment of 

pressure AQ and d is the  borehole diameter. Values of K(V, 8) are given 

i n  Table 1-1. 

111. BOREHOLE JACK TEST - D I S C U S S I O N  OF DATA INTERPRETATION 

A. Influence of Plate Width 

Figure Z a ,  p lo t ted  from Table 1-1 shows the var ia t ion  of K with 

change i n  6, the  angle subtended by half  the p l a t e  width of a rc .  

quant i ty  K, according t o  Equation 1-4, is  the slope of the l i n e  r e l a t ing  

E t o  the r a t i o  of the measured quan t i t i e s  AQ and AU /d. 

K with thus affords  a comparison of the  s e n s i t i v i t y  of jacks designed 

fo r  d i f f e r e n t  plate widths. The maximum s e n s i t i v i t y  - the highest  value 

of K - occurs a t  values of B about 45' (Figure 1-2a),  the width se lec ted  

i n  designing the NX p l a t e  bearing tes t  device. I t  should be noted 

here t h a t  f o r  s m a l l  values of @, corresponding t o  narrow p la t e s ,  a punching 

f a i l u r e  of the rock might take place. However, t h i s  would hardly be the 

case when B i s  as large as  4 5 O  

The 

The var ia t ion  of d 
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B. Effec t  of Poisson's Ratio 

Figure 1-2b shows t h a t  for  a given AQ and Aud/d, the in te rpre-  

t a t i o n  of E is f a i r l y  insens i t ive  t o  Poisson's r a t i o  (V), except a t  high 

values of v. A 50% overestimation i n  v, from 0.2 t o  0.3, would lead t o  a 

3.25% underestimate of E. I f  V were taken as 0.4 r a the r  than the assumed 

t r u e  value of 0.2,  and e r ro r  of loo%, the value assigned fo r  E would be 

underestimated by 8.50%. 

crepancies between f i e l d  and laboratory values. 

cores re t r ieved  from the borehole would give a value representat ive enough 

t o  preclude such large e r r o r s  on the Poisson's r a t i o ,  hence reducing the 

e r r o r  on E t o  a negl igible  amount. 

A s  opposed t o  E,  V is not subjec t  t o  la rge  dis- 

Thus simple t e s t i n g  on 

C. Ef fec t  of Non Linear Rock Propert ies  

Qual i ta t ive in te rpre ta t ion  of borehole jack o r  dilatometer data  

i n  rock exhibi t ing non l i nea r  s t r e s s - s t r a in  behavior is en t i r e ly  appropriate 

and meaningful. However, a s  the e n t i r e  ana ly t ica l  discussion assumes l i nea r  

e l a s t i c  r e l a t ions ,  quant i ta t ive  in te rpre ta t ion  using these r e s u l t s ,  even i n  

incremental form, may be erroneous. 

D.  Ef fec t  of Steel Plate 

The mathematical solution to the borehole jack problem w a s  

derived f o r  a condition of constant horizontal  pressure on the inner  

boundary. I n  ac tua l  f a c t  the boundary condition on the loaded border of the 

borehole i s  complex and unknown owing t o  the unknown coupling between the 

s t e e l  p l a t e s  and the rock surface.  Figure 3a presents a reasonable character-  

i za t ion  of the ac tua l  boundary condition i n  the borehole p l a t e  bearing 

device. A uniform hydraulic pressure bears against  the inner s ides  of the 

p la tes .  Except i n  very hard rock, the p l a t e s  are so much s t i f f e r  than the 

rock as to  be driven outward with l i t t l e  bending. The r e s u l t  is a nearly 

constant horizontal  displacement of the rock border; other components of 

displacement may be considered t o  e x i s t  and be unequal according t o  the 

f r i c t i o n  and Poisson's r a t i o  contrast  between the steel and rock. 

To assess the s ignif icance of this departure from the assumed 

boundary condition, constant displacement and constant pressure solut ions 

were compared f o r  V = 0-25 using the method of f i n i t e  element ana lys i s  i n  
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plane s t r a i n ,  

The pressure d i s t r ibu t ion  and displacement vectors along the wall of the 

borehole are compared f o r  the constant pressure and constant displacement 

A f i ne  mesh was used with 775 nodal points  and 720 elements. 

solut ions,  i n  Figures 1-3b, c ,  and 1-3d, e, respectively.  

The procedure consis ts  of inputing a constant pressure (or  

constant X displacement) along the boundary jack-borehole, computing the 

average X displacement (or pressure) from the output,  and using the  average 

value obtained i n  Eq. 1-1. For $ = 45' and V = 0.25, one obtains K = 1.250 

f o r  the constant X displacement case and K = 1.235 f o r  the constant pressure 

case as  compared t o  K = 1.254 fo r  the exact ana ly t ica l  solut ions.  

constant X displacement case i s  believed t o  be the more representat ive of 

ac tua l  f i e l d  behavior and i ts  simulation by f i n i t e  element analysis  gave the  

c loses t  r e s u l t  t o  exact solut ions (K = 1.250 versus K = 1 .254) .  This is the 

extent  of the  f i n i t e  element approximation. 

The 

E. Ef fec t  of F i n i t e  T e s t  Length 

The plane s t r a i n  solut ion assumes an i n f i n i t e  test  length.  In  

ac tua l  f a c t  the NX borehole p l a t e  bearing device has a length t o  diameter 

r a t i o  of 8"/3". To ca lcu la te  the e f f e c t  of the f i n i t e  p l a t e  is a d i f f i c u l t  

three dimensional problem i n  prismatic space which could not be solved i n  

closed form. However, an estimate of the end e f f e c t  w a s  obtained by per- 

forming a three dimensional f i n i t e  element analysis  using a new computer 

program developed by Professor E. L. Wilson (1967). In  t h i s  approach, a 

load of f i n i t e  length is applied to  a portion of a longer space whose cross  

sect ion is  constant. The var ia t ion  of load along the length of the  space is 

achieved by Fourier expansion making repeated cumulative passes through the 

problem. 

* 

Figure 1-4 gives the var ia t ion  of displacement a t  the border of the  

borehole over the width and length subjected t o  uniform pressure (V = 0 .25 ) -  

The value of K corresponding t o  the average displacement under the loaded 

* 
The r e l a t ed  three dimensional problem of a hydrostat ic  pressure of f i n i t e  

length 2 c i n  a c i r cu la r  hole of radius a was solved by Tranter i n  1946 
(Quarterly of Applied Mathematics, vol .  4 ,  p. 298). The three dimensional 
e f f e c t  was 37% fo r  c/a = 0.5 and was decreasing rapidly with increased load 
length. I n  the NX p l a t e  bearing test ,  c/a = 2.67. 
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area is  1.06, The corresponding value from f i n i t e  element ana lys i s  of 

the  plane s t r a i n  approximation is  1.23, Thus the f i n i t e  length may be 

taken in to  account by reducing by 14% values of E derived from Eq. 1-4 and 

Table 1- 1, i. e. 

I n  the  NX borehole p l a t e  bearing device, d = 3 inches, and Q is 

93% of the hydraulic pressure Q 

the  following equation fo r  in te rpre ta t ion  of f i e l d  da t a  i n  tests with t h i s  

instrument. 

Put t ing these values i n  Equation 1-5 v i e lds  h’ 

“h E = 2.40 K(V)- 
A‘d 

(1-6) 

TABLE 1-1 

Values o f  Constants i n  Equation 1-6 

V 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 
K(v) 1.38 1.29 1.29 1.28 1.27 1.25 1.23 1.20 1.17 1.13 1.09 
2.40 K(v) 3.07 3.10 3.10 3.07 3.05 3.00 2.95 2.88 2.81 2.71 2.62 

F. Rock St re s s  with the Borehole Jack 

The complex var iab le  method leads to s e r i e s  formulas f o r  t he  stress 

components i n  the  rock, as presented i n  the Appendix. The thrus t ing  a p a r t  

of the borehole by the ac t ion  of the jack  leads t o  a tangent ia l  tension on 
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the w a l l  of the  borehole a t  8 = 90' 

For the NX borehole plate bearing device, 

stress concentration a t  8 = 90' of - 1.0. 

a t  t h i s  po in t  could be used as a measure of the t e n s i l e  s t rength of the 

rock i f  a borehole camera is  used concurrently. From Equation 1-A-32 

(Appendix), one a l so  obtains  a t  8 = O o ,  Cfe = 0.875 Q (compressive). 

= lT/4 giving a tangent ia l  

The onset of t e n s i l e  cracking 

The s t r e s ses  around the borehole expressed as a concentration 

of the jack  pressure a r e  presented i n  Figures 1-5a, b,  and c. 

G. Influence of Possible Crack Formation 

In  a l l  t h a t  precedes, the rock has been assumed t o  be homo- 

geneous, i so t rop ic ,  and l i nea r ly  e l a s t i c .  Moreover, no f a i l u r e  c r i t e r i o n  

has bean considered around the borehole. However, owing t o  the magnitude 

of stresses which the jack can induce, superimposed onto the i n  s i t u  

stress concentrations,  it is not unlikely t h a t  cracking might develop 

around the borehole pa r t i cu la r ly  i n  soft or weak rocks. Cracks could 

be or iginated and propagated primarily i n  those regions where high t e n s i l e  

stresses are found t o  develop; the cr i t ical  ones w i l l  be the tangent ia l  

stresses. Then, upon da ta  analysis ,  corrections s h a l l  be introduced t o  

take care of the apparent reduction i n  the computed modulus of e l a s t i c i t y  

to  obtain the  t rue  value f o r  i n t a c t  rock. Both concepts presented above 

are discussed. 

The complete tangent ia l  stress f i e l d  a t  selected points  (on 

the w a l l s  of the  borehole and i n  planes of pr inc ipa l  stresses) around 

the borehole can be readi ly  obtained by superposition of the e f f e c t s  

of i n  s i t u  b i a x i a l  stress f i e l d  (S, TI and of jacking (Q) . Figure 1-6a 

gives the tangent ia l  stress concentration fac tors .  Depending upon the 

r a t i o  S/T, the  stress pa t t e rn  before jack pressurizat ion can take d i f f e r e n t  

forms. 

(lateral cons t r a in t ) .  

They a r e  shown on Figure 1-6b assuming t h a t  S/T = N = v / ( 1  - v) 

I f  S and T have been ac tua l ly  measured, the proper 
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a) TANGENTIAL STRESS CONCENTRATION FACTORS AROUND A BOREHOLE 
IN A BIAXIAL STRESS FIELD. 

Case = O 
N = O  

case U ~ 0 . 5  
N =  I 

0 2 s  

3 s  3s 2.66 S 2.663 2 s  2 s  

- s  0 2 s  

b) TANGENTIAL STRESSES AROUND BOREHOLE - NO JACKING. 

- Q  2 s - Q  

3s + 2s + 2s + 
.e75 Q .875 Q .e75 Q 

- ( S  + Q )  - Q  2 s - Q  

c) JACKING IN DIRECTION OF MINOR PRINCIPAL STRESS. 

-S+.875 Q .875Q 2 S+ .875Q 

3s -Q 3s-Q 2.66s-Q 2.66 S - Q 2s-Q 2 s - Q  

-S + .875 Q .875Q 2s +.e750 

d) JACKING IN DIRECTION OF MAJOR PRlNCl PAL  STRESS. 

S = MAJOR PRINCIPAL STRESS (positive in  compression) 
T =  MINOR PRINCIPAL STRESS (positive in cornpression) 

Q =  JACK PRESSURE (positive) 

FIGURE 1-6 
CUF1UL4TI VE STRESS CONCEYTRATI ON FACTORS AROUWT! EOREIi3LE 
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value w i l l  then be used, Upon appl icat ion of a jack pressure Q, t he  

addi t ional  tangent ia l  stress induced is f o r  8 = 45O a t  0 = 90°, 

0 = - Q  and a t  8 = O o ,  CT - 0.875 Q. Accordingly, the complete 

tangent ia l  stress pa t te rn  a t  the se lec ted  points  is shown on Figures 1-6c 

and 1-6d when jacking takes  place i n  the  d i rec t ion  of e i t h e r  p r inc ipa l  

stress. These are the two extreme cases i n  terms of tangent ia l  stress 

magnitude. I t  can be seen t h a t  the most unfavorable s i t u a t i o n  is when 

jacking takes  place i n  t h e  d i rec t ion  of the minor p r inc ipa l  stress. 

High t e n s i l e  tangent ia l  stresses w i l l  then be induced i n  the plane 

perpendicular t o  the d i r ec t ion  of jacking, and the l o w e r  the Poisson's 

r a t i o  o f  t he  rock, the higher t h e i r  magnitude. 

e e -  

I n  the  eventual i ty  of crack formation i n  a plane perpendicular 

t o  the d i r ec t ion  of jacking, the observed displacement of the jack p l a t e s  

w i l l  be g rea t e r  than the  one taking place i n  an i n t a c t  body. Thus, the  

modulus of e l a s t i c i t y  computed from load-deformation curves w i l l  be lower 

than i f  no crack is i n i t i a t e d .  Evaluation of the required correction on 

E w a s  attempted by simulation technique. The constant X displacement 

f i n i t e  element model w a s  used according t o  previous conclusions. Cracking 

w a s  simblated by allowing no t e n s i l e  s t rength  fo r  a ce r t a in  d is tance  d 

from the borehole along the  plane perpendicular t o  the d i r ec t ion  of 

jacking. Three cases w e r e  considered: 

CT = d/4 (crack extending to a half  radius  dis tance)  

0 = d/2 (crack extending t o  a one radius  dis tance)  

c7 = 2.5 d (simulates a half  i n f i n i t e  medium f o r  a l l  practical 

purposes ) 

The r e s u l t s  are compared i n  T a b l e  1-3 with the case of no cracking. 

Unless indicated by a break, o r  y ie ld  poin t ,  i n  the load 

deformation curve, cracking a t  depth i n  a borehole would be monitored 

by means of borehole camera, but its exten t  from the  w a l l  ins ide would 

be extremely d i f f i c u l t  t o  measure. However, from Figure 1-5b, one can 
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TABLE 1-3 

Influence o f  Possible Crack Formation 

Length o f  Crack K Variation i n  K Apparent Decrease i n  E 

0 1.250 + o  
d/ 2 1.410 + 13% 

d 1.553 -i- 24% 
2.5 d 1.614 -i- 29% 

- 
- 13% 
- 24% 
- 29% 

see t h a t  a t  a dis tance,  d = 1 radius,  the  maximum t e n s i l e  tangent ia l  stress 

induced by jacking has decreased t o  0.1 Q (maximum value = 930 p s i ) .  

Moreover, within a sho r t  dis tance from the borehole, the i n  s i t u  stress 

f i e l d  is again compressive. Thus it is  very unlikely t h a t  a crack could 

propagate beyond between 1/2 and 1 radius  from the borehole even i n  the 

weakest rock. Accordingly, the  corresponding maximum correct ion t o  be 

introduced i n  the computed modulus of e l a s t i c i t y  w i l I  probably never exceed 

15%. This is w e l l  within the l i m i t s  of accuracy required f o r  engineering 

purposes knowing t h a t  usually r e s u l t s  of any test  a r e  checked against  

r e s u l t s  obtained by other  methods. I n  case of jacking across a j o i n t  

in te rsec t ing  the borehole, the required correction could reach c lose  t o  

30% and it i s  suggested t h a t  a close examination of jacking explacements 

be made before ac tua l  t e s t i n g  i n  order t o  avoid the influence of major 

d i scont inui t ies  i n  the rock mass. 

H. Influence of Wall Roughness and Roundness 

Other inves t iga tors  (Suzuki, 1967; Agarrval, 1967) have analyzed 

the  influence of borehole wall roughness and roundness on the  accuracy of 

stress determinations from borehole deformations. They conclude that 

with modern diamond d r i l l i n g  equipment and honing devices the morphology 

o f  the boreholes enable accurate measurements. 

t e s t ing ,  crushing of a s p e r i t i e s  might take place a t  the beginning of loading 

In  the case of jack 
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but the modulus of deformation is obtained from the linear portion of the 

load deformation curve which corresponds to a uniform loading, 

(1967) I roughness can be limited to about 

placement is of the order of several 

purposes, no correction will have to be introduced. 

After Suzuki 

inches, whereas, plate dis- 

inches, so that for practical 

I. The Size of Borehole Jack Tests 

A borehole jack produces nonhomogeneous stress and displacement 

fields in the rock around the borehole. Figures 1-5a, b, and c give 

the rate at which the applied pressure decays with depth, and Figure 1-7 

presents the decay of displacement with depth. The size of the tests can 

be expressed by the volume of rock significantly stressed, say to a minimum 

of 1,000 psi, and within which most, ca. 90% of the displacement has 

occurred. At a plate pressure of 9,000 psi this volume extends about 

4.5 inches deep from the wall of the NX borehole. Thus, the test may be 

considered as operating on an irregularly shaped rock domain roughly one 

foot in maximum extent. It is much larger than laboratory tests, and 

somewhat smaller than conventional plate bearing tests conducted in adits. 

IV. COMPARISON OF BOREHOLE JACK AND OTHER IN SITU TESTS 

NX borehole plate bearing tests were conducted in three underground 

test chambers where extensive in situ testing programs had been completed 

or were in progress. These were at the Tehachapi tunnel near Bakersfield 

(California Department of Water Resources); Dworshak dam near Orofino, 

Idaho (Walla Walla District, U. S. Corps of Engineers); and the Crestmore 

mine near Riverside, California (American Cement Co.). The equipment 

used in these tests included the NX borehole plate bearing device, two 

Schaevitz servo indicators, a double acting 10,000 psi hand pump, and 

Bourdon pressure gages, as depicted in Figure 1-8. 

At the test gallery of the Tehachapi project an adit to the discharge 

tunnel, the rock is a closely fractured diorite gneiss with seams of 

clay derived from the rock by hydrothermal alteration. Several hard, 

fresh pieces of core were obtained in drilling the NX holes for the 

borehole plate bearing tests but the overall recovery was only fair. 

Four borehole jack tests were conducted in two horizontal holes. 
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E 1-8. COMPLETE EQUIPMENT FOR NX 

BOREHOLE PLATE BEARING TEST. THE APPROXIMATE 

SlONS OF THE VOLUME OF ROCK UNDER TEST 

S I T U  I S  INDICATED BY THE CONCRETE CYLINDER. 
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In  s i t u  tests included stress measurements, seismic measurements, 

Four p l a t e  bearing tests w e r e  performed; and and p l a t e  bearing tests. 

analyses w e r e  made of the da ta  assuming both uniform and ro t a t iona l  

def lec t ions ,  a s  discussed by Stroppini and muse  (1964) f o r  similar 

tests a t  Oroville.  Figure 9a presents a typical pressure versus 

diametral  displacement curve f o r  the borehole jack tests a t  t h i s  

location. The average value of E from p la t e  bearing tests w a s  

700,000 p s i ;  the average value of E from borehole jack tests w a s  

840,000 p s i  i n  the same pressure range. 

"he Dworshak dam tests w e r e  conducted i n  a test ga l l e ry  employed 

previously by Shannon and Wilson (1965) fo r  a comprehensive program of 

i n  s i t u  rock tests. The rock a t  t h i s  s i t e  is a massive t o  moderately 

jointed epidote  quartz-dior i te  gneiss. The i n  s i t u  tests included p l a t e  

bearing test ,  a chamber test, and seismic measurements. 

There was g rea t  scatter i n  the r e su l t s  of p l a t e  bearing tests; the 

mean modulus of e l a s t i c i t y  i n  p l a t e  bearing was 3.4 mil l ion p s i  with 

individual r e s u l t s  ranging from 500,000 p s i  t o  5 mil l ion ps i .  Fourteen 

borehole jack tests were conducted i n  e ight  boreholes, th ree  of which 

were water f i l l e d .  The average modulus from these tests w a s  2 .1  mil l ion 

p s i ,  with l i t t l e  sca t t e r .  

f o r  borehole jack tests is shown i n  Figure 1-9b. 

A typ ica l  curve of pressure versus displacement 

An extensive program of i n  s i t u  tests were completed by Heuz6 and 

Goodman (1967) a t  Crestmore mine, an underground room and p i l l a r  mine i n  

massive, coarse, c rys t a l l i ne  marble. In  s i t u  tests included f l a t  jack 

measurements, p l a t e  bearing tests, and f i e l d  seismic measurements. Bore- 

hole jack tests w e r e  conducted i n  two horizontal  boreholes a t  the s i t e  of 

the f l a t  jack emplacements. The modulus of e l a s t i c i t y  values computed 

from the load deformation curves on pressuring the f l a t  jacks averaged 

1.8 mill ion ps i .  The borehole jacks gave an average value of 1.5 mil l ion 

p s i  fo r  E. 

f o r  the borehole tests is given i n  Figure 1-9c. 

A typ ica l  curve of p l a t e  pressure versus diametral  displacement 

Table 1-4 is a summary and comparison of tes t  r e s u l t s  from the  three 

areas  
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At each of the sitesr E was measured, additionally, in unconfined 

compression tests on NX core specimens in the laboratory. 

were, in all cases, considerably higher than the results of static tests 

in situ -by a factor of 3 or more. 

laboratory values is a common one in rock testing. 

usually conducted on solid samples which are not fully representative of 

the rock mass with its defects. 

were comparable to those of other in situ tests.. 

These values 

This discrepancy between field and 

Laboratory testing is 

The results of the borehole jack tests 

Borehole jack tests are well suited to measurements of rock deforma- 

bility at engineering sites. 

conduct than plate bearing, flat jack, and other in situ techniques; thus 

many more measurements can be made. Furthermore, being conducted in drill 

holes, rock volumes remote from the surface can be tested. These facts 

allow one to establish the attributes of the rock mass quantitatively and 

qualitatively in every rock member reached by a work. 

from these tests in three earth rock engineering cases discussed herein 

were comparable to values obtained by other more costly in situ techniques. 

The tests are easier and less costly to 

The values obtained 

V. FURTHER RESEARCH 

This report has reviewed current knowledge on determination of the 

in-situ deformability of rocks and soils. 

possible to load the borehole walls to failure with borehole devices 

to determine the soil or rock strength. The load-deformation information 

to failure could then be used to determine the bearing capacity and other 

required design parameters of lunar materials. 

In principle, it is also 

In order to determine the strength parameters of soil or rock from 
a borehole test it is necessary to know: the distribution of contact 

pressure achieved by the loading device; the state of stress induced 

into the material at different stress levels; the actual load deformation 

characteristics of the material under homogeneous stresses; failure 

criteria; failure mechanism; and the geometry of the problem (length and 

width of bearing plate, depth of hole, and variation of hole diameter). 

To obtain this information both theoretical and experimental studies are 

required. 
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SYMBOLS 

d 

E 

K 

Q 

'h 

'd 

B 

AQ 

"d 

V 

Borehole diameter (in) 

Modulus of elasticity (Young's Modulus) (psi) 

Constant (for a given v and B) 

Applied unidirectional pressure = 0.93 Qh (psi) 

Hydraulic pressure (psi) 

Diametral borehole deformation (in) 

Half plate width (degrees) 

Increment load (psi) 

Incremental deformation (in) 

Poisson's Ratio 



APPENDIX 

SOLUTION OF UNIAXIAL STRESS PROBLEM 

BY COMPLEX VARLABLLE METHOD 

Boundary condition at r = a ,  (r = 0,  and 7 Y XY 
= 0 

Q - p < e < p  , 7r - /3< 0 < p  f IT 

0 p < 0 <  I T - p  , IT f / 3 <  e <  27r - p 

- 
Ox - 

At 0 from x - axis (Q = 2 p): 

- - p + p c o s 2 9  9 
- - p - p c o s 2 0  Oe 
- - p s i n 2 0  7re - 

1-A-1 

1 -A-2 

The problem can be conveniently decomposed into two more simple 

problems, A and E. Each problem will be solved separately, and the results 

are added. The displacement relations and the s t ress  relations are  expressed 

in complex forms. 
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A. UNIFORM STRESS OVER TWO SYMI1/IETItlCAL PORTIONS OF TIIE 
CIRCULAR BOREHOLE* 

Y 

Boundary conditions at r = a 

P - @ < e < @  > a -  p <  e < a +  p 
0- - - 1 -A-4 
r 

0 / 3 < e < a - p  , a +  p <  e <  Z I T  - p 

where 
2 n  

d e  1 -in0 - - - j' - i 7 . )  e 
2a re An 

0 

1 -A-5 

1 -A-6 

2 i0 
(T, - i 7.  = 4' (z) + +' (2) - [ z 4'' (2) t- x" (z) ] e 1 -A-7 
r re 

* 
This problem was first solved by Jaeger and Cook in State of Stress in the Earth's 
Crust (CV. R. Judd, ed.) ,  Elsevier, 1964, p. 381-396. 
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00 

-n 2 an z 
n=O 

0 - bo - 

Solve for  an and bn: 

00 00 

1 -A-8 

1 -A-9 

1-A-10 
n=O m =1 

Determination of Displacement: 

1 -A-1 2 

03 

(2m-1) 
m (1 - 2 m) 2 G u r  = Real (R.H.S.)  = - aFppa + C S P P  a s i n  2mf;  cos 2 m 0  

IT 
m=l 

(2m-1) 
a s i n 2 m p  c o s 2 m 0  

m=l 

2 (m+ 1) 

IT (2m + 1) a s i n  2 m p  cos 2 m 8  1-~-13 



p = l  

i- 1 - 1  sin 2 m p  cos 2 m 0  1-A-14 - 2 p - ’ p  2 m + 1  m ‘ 2 m - 1  
7r - 2 G u  - - 

r P a  
m=l 

St re ss De te rminat ion: 

= 4 Real [ (p7 (z) 1 + 0, 

00 

- 7F = 2 / 3 8  + 2 1  L p 2 m ( m + 1  - m p l s i n  2 2 m p  cos z m e  m 
m=l r P  

1-A-15 

1-A-16 

1-A-17 

1 -A-18  

1-A-19 
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2iO B. THE EXPONENTIAL BOUNDARY CONDITION PROBLEM: q, - i = p e 

x 
Boundary Condition at r = a 

G. - p cos 2 E) - 

''e 

- 
r 

- - - p sin 2 0 . r r - p c : e  < a +  p 

1 -A- 20 

G. r 
p <  e < n - P  

r r + p  < e < 2 n - p  

With boundary conditions ( 5 )  and (7) where An is defined by (6), the Fourier series 

representation of boundary conditions: 
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Using (9) and computing for  an aiid b,: 

co 
2m 

-2m sin 2 (m - 1) f i  z 2 :(: - 1) 
all z - ~  = ?..RE a2 2-2 + 

Q’ (2) = z 7r 
n=O m=2 

co 

-2(m+ 1) sin 2 (m + 1) p z n(m + 1) 
m=2 

Cal cu1 at i on of Dis pl RC em ent s: -- 

Using (12) at p = 1 

cos 2(m-l) 0 J sin 2 m /3 
1 

2m - 1 
4- 

1 -A-22 

1 -A-23 

1 -A- 24 

Calculation of Stresses: 

Using (15) and (16) 

Eo 

2 2m 

m - 1  
71 4 - = 6 p p  c o s 2 8  - 1 2p [ 2 m - 2 - ( 2 m + l ) p  ] s i n 2 ( r n - l ) p c o s 2 m 8  

m=2 
Oe P 

sin 2(m + 1) p cos 2 m 8 m i -  1 
m=O 

1 -A-ZE 
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CO 

2 
21x1 

Tr 2 0- - = 8 p p cos 2 8 + [ 2 +  2111 - (2121 -I- 1) p 3 sin 2 (m - 1) pcos 2 m 0 
r P  

m=2 

2(mt 1) 
sin 2 (m + 1) p cos 2 m 0 

+ 2: p(mi- 1) 
m=O 

co 

2 2m 
[ 2 m - (2m + 1) p ] s in  2 (m - 1) p sin 2 m E) 

-!- 2 723 
m=2 

a 
2(m+ 1) 

sin 2 (m + 1) p sin 2 m 8 
m=O 

1 -A- 26 

1 -A-27 
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C. NET RESULTS -- Obtaiiied by Summing  Solutions of A and B. 

Net Radial Dis pl a cement 

Add (14) and (24) to obtain the net radial displaceineilt relation: 

00 

cos 2 (m - 1) o 1 ) c o s 2 m 0  + -- 2m+ 1 2m - 1 
?-A-28 1 1 c +  

+ (2m - 1 

At 0 = 0, radial displacements is maximum. 

(6 + 1, sin 2 m p (2m + 1) (2m - 1) 
- - 2 p ( l + Q  - 2 lT - -  

2Gt+max p a  
m =1 

For the application of the results to the calculation of modulus of deformability, it 

is necessary to obtain a relation containing the integrated value of displacement. 

1-8-29 

I 

1 a s i n p  = [R.H.S. (ZS)] a c o s  0 d 9  
I T  r Z c + u , p a  1 -A-30 
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Replacing 5 = 3 - 4 v in the result gives: 

a 5 - 4 v  3 - 4 v  
Sill 3 /3 ] 

6 [ 2 G E r  -]si-11/3 = - 2 p  [-z s i n p  + 
P a  

I 3 - 4 v sin (2m f 1) 6 + sin (2m -t. 3) 6 
2 m  [ 2m+1 2m+ 3 

ni =1 

I sin (2m - 1) 0 + sin (2m f 1) p 1 
+ 1 2 m - 1  2 m +  1 l 2 m - 1  2 m + 1  

+ 3 - 4 v  

1 1  
1 sin (2m - 3) p + sin (2m - 1) B + 

2m - 1 2 m - 3  2m - 1 

Add (17) and (25) and rearrange the terms. 

i - 1  m = 0 ,  2, 4,  ... 
COS 2 m  e = 

- 1  m = l ,  3, 5 ,  ... 

into (32) 

1 -A-31 

1 -A-32 

1 -A-33 
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For p = .r/4 (Q = 2 p): 

(fe = - Q  

This result checks with finite elenwilt analysis. 

Net rr 

Add (18) and (26) and rearrange the terms. 

03 

2(m+ 1) p sin 2 (ni i- 1) p IT 2 Vr; = 2 p p 2  [ li- ( 4 - 3 p ) c o s 2 8 J  

m=O 

Net Tre 

Add (19) and (27) and rearrange the terms. 

m=O 

3 1 2 f -  [ 2 m +  4 - ( 2 m +  5) p ] s i n 2  ( m +  2) 0 m +  1 

1 -A-34 

1 -A-35 

1 -A-36 
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Equation (31) is used in the calculation of the modulus of defoiiiiation in 

ternis of applied pressures aid corresponding deforii~ations. Using Q = 2 p and 

d = 2 a,  (31) can be rewritten as: 

2 E-Gr IT 

2(1 3- v) p a 
- sin p = R. H. S .  

Q d  
Ud 

E = K ( v , / 3 ) ~  

Values of K (v,@ are expressed in Table 2 for different values of v and p. 
Q is the pressure actually applied to the rock (see 37). The variation of K(v, pi 

with respect to p is shown in Figure 2 for values of v = 0 .25 ,  0.40, and 0.10. It 

is observed that K has a maximum value at p = Go, the case ol  the NX bore hole 

uniaxial jack. 

1 -A-37 
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CHAPTER 2 

PERE/LZABILITY AND THERMAL CONDUCTIVITY STUDIES 

FOR LUNAR SURFACE PROBES 

(Paul A. Witherspoon and David F. Katz) 

I a INTRODUCTION 

Among the objectives of man's study of the moon is an understanding 

of the flow of heat and fluids through lunar materials. This knowledge 

is not only of scientific value, but it is essential to the solution of 

engineering problems in exploring the moon. Two parameters of great 

importance are permeability and thermal conductivity. 

From the scientific point of view, permeability is the dominant 

factor in hydraulic diffusivity. Thus, consideration of the emanation of 

vapors or liquids from the depths o f  the moon must depend upon a knowledge 

of the magnitude and variation of lunar permeability. In the analogous 

flow of heat, thermal conductivity is the controlling factor in thermal 

diffusivity. Thus, any studies of heat flow through the moon must take 

this paameter into account. Of course, permeability and thermal conduct- 

ivity are rock properties of fundamental interest. 

From the engineering standpoint, the many problems that man will 

face as he explores the moon will require a knowledge of both permeability 

and thermal conductivity of lunar materials, For example, the possibility 

exists of containing fluids in subsurface formations, either chambers or 

porous rocks, as suggested by current practice on earth. Low permeability 

formations may very well exist on the moon in which appropriate storage 

can be achieved, thereby eliminating the need for transporting containers 

from earth. In addition, the problem of fluid waste disposal may best be 

solved by using subsurface formations. 

The extreme variation in temperature between lunar day and night 

will, in some cases, require the utilization of thermally insulating 

materials. Since rocks have an inherently low thermal conductivity, they 

may be very well-suited to this use. Hence, knowledge of the thermal 

conductivity of lunar rocks is essential. 
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In order that an adequate understanding of lunar permeability and 

thermal conductivity can be achieved, a representative series of measure- 

ments must be made. Clearly, the amount of lunar materials to be re- 

turned to earth for analysis will be inadequate. Thus, the feasibility 

of in situ measuring devices must be given serious consideration. Such 

devices should be easily transportable and capable of providing rapid 

measurements. 

As a first approach to this problem, we propose that consideration 

be given to a surface probe, i.e., a device that will rest directly on 

the surface of the material to be measured. In determining permeability, 

a gas is injected into the material and appropriate pressure and flow 

rate measurements are made. In determining thermal conductivity, heat 

is transferred into the material and appropriate temperature and heat 

flow measurements are made. Details of these two devices will be dis- 

cussed below. 

In developing the theory for these devices, it was necessary to make 

certain simplifying assumptions. Specifically, the lunar material was 

assumed to be homogeneous and isotropic for both fluid and heat flow. 

The governing diffusion equations made use of zero initial pressure and 

temperature distributions throughout the material. While this is effect- 

ively true for fluid flow, it is of no mathematical consequence in either 

case, because the governing equations are linear and homogeneous. 

In considering the feasibility of a surface probe, one must recognize 

that the lunar surface is composed of both consolidated and unconsolidated 

materials. In heat flow, the relative contribution of radiation to the 

overall heat transfer is strongly dependent upon the degree of consoli- 

dation. As porosity decreases, transfer by radiation also decreases, and 

conduction through the matrix becomes the dominant mode of heat flow. On 

the other hand, as porosity increases and the area of grain contacts 

diminishes, then radiation dominates the heat flow. 
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I1 PERMEABILITY MEASUREMENT 

A. Conceptual Description of Probe 

A schematic drawing of the probe is  given i n  Figure 2-1. The 

system bas ica l ly  consis ts  of a holding chamber containing pressurized 

f l u i d ,  the d i s c  source, and a pressure measuring device imbedded along 

with the source i n  a c i r cu la r ,  impermeable s k i r t .  The radius  of the 

s k i r t  i s  of the  order of ten  source r a d i i .  The holding chamber contains 

the charge of gas f o r  an individual measurement, and i s  connected by valves 

to the d i sc  source and t o  a la rger  gas s torage tank. A s ing le  switch 

releases the  charge of gas,  and ac t iva tes  a t i m e r  linked to the surface 

pressure tap.  

between the release valve and an e x i t  tap. The connecting valve between 

the holding chamber and the  storage tank insures t h a t  only a small port ion 

of the gas supply is  consumed per measurement. This a l so  allows f o r  

var ia t ion  i n  source pressure as required by varying permeability. One 

can then compute permeability from a record of pressures and flow rates 

along with a knowledge of the rock porosity.  Greater accuracy can probably 

be achieved by placement of addi t ional  pressure taps i n  the s k i r t ,  and 

* 

Constant source pressure is achieved by a servo connection 

su i t ab le  averaging of the individual measurements. 

B. Unconsolidated Materials 

I n  the ea r th ' s  atmosphere, permeability of unconsolidated 

materials i s  usually determined u t i l i z i n g  the Kozeny-Carmen equation 

(Carman, 1956) : 

where : k = permeability (an2) 

d = the  mean gra in  diameter (cm) m 
= porosi ty  (dimensionless) defined as the  r a t i o  of the  

volume of the voids t o  the t o t a l  bulk volume 

* 
A s  can be seen from Figure 1-5, no sharp gradients e x i s t  beyond t h i s  

region so t h a t  there  is no ef fec t ive  flow out  of the surface.  
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This equation w a s  developed empirically f o r  viscous laminar flow through 

a well-sorted mixture of spher ica l  sand grains .  A s  w i l l  be discussed 

below, flow of gases i n  the lunar environment m y  be r a r i f i e d  t o  the 

extent  t h a t  viscous flow theory is inapplicable.  Thus, ca lcu la t ions  

based on Equation 2-1 w i l l  y ie ld ,  a t  most, only l o w e r  bounds t o  the 

e f f ec t ive  permeabi l i t ies  of lunar mater ia ls .  

C. Consolidated Materials 

1. Determination of flow regime. As discussed above, it is  

proposed t h a t  the surface probe u t i l i z e  a gas fo r  permeability measure- 

ment. Due t o  the high vacuum i n  the lunar environment, there  e x i s t s  a 

basic  problem of determining the dominant flow regime. 

A s  the average pore s i z e  and/or f l u i d  pressure decrease, 

the fundamental nature of gas flow changes. The i n i t i a l  departure from 

viscous flow is the relaxat ion of the no s l i p  boundary condition on the 

i n t e r s t i t i a l  surfaces.  The resu l t ing ,  augmented flow, while s t i l l  

viscous i n  nature exhibi ts  a greater  temperature dependence than previously. 

A s  the  e f f ec t ive  degree of ra refac t ion  increases fur ther ,  the continuum 

nature 02 the  f l u i d  breaks down, and the flow must be modeled from a 

molecular po in t  of view. I n  general ,  account must be taken of both in t e r -  

molecular co l l i s ions ,  and co l l i s ions  between molecules and the i n t e r s t i t i a l  

boundaries. However, when a high degree of ra refac t ion  i s  achieved, the 

former become negl igible  due t o  the relative sca rc i ty  of f l u i d  molecules. 

The f l u i d  parameter ind ica t ive  of the pa r t i cu la r  flow regime prevalent 

is the Knudsen number, defined here as K = -, where A is the mean f r e e  

path of the molecules of the f l u i d ,  and d an average pore dimension. 

For viscous flow, K << 1, whereas fo r  the so-called Knudsen flow, K >> 1. 

-?l 

n d  

n n 

To date ,  some ana ly t ic  but  v i r t u a l l y  no experimental work 

has been done i n  attempting t o  model these various flow regimes i n  porous 

media. The most per t inent  e f f o r t s  are discussed below. However, the 

overa l l  flow behavior i n  a surface probe system is a much more complex 

problem. In  pa r t i cu la r ,  the nature of the evolution of Knudsen flow, 

expected i n  the lunar surface,  is d i f f i c u l t  t o  foresee a t  t h i s  t i m e .  I t  

seems l i k e l y  t h a t  i n  the immediate neighborhood of the f l u i d  source, the 
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flow will be viscous in nature, and, therefore, basically predictable by 

current techniques. However, the onset of Knudsen flow, and the possible 

effect this may have on the initial flow are difficult to surmise. 

present, it is not certain how the overall flow of gases in lunar materials 

can be characterized. 

At 

It is also not certain what role adsorption will play as 

gases pass through lunar materials. 

state flow conditions prevail. For nonsteady flow, the significance of 

adsorption will depend largely upon the presence of residual gases deep 

in the lunar crust and the subsequent degree of outgassing at the surface. 

This will not be a problem if steady 

The discussion that follows considers only viscous flow in 

detail. We will first analyze the isothermal flow of a slightly compressible 

fluid in porous media, this being the simplest case to treat mathematically. 

Next, we will examine the much more complex problem of compressible flow. 

Finally, we will consider briefly the flow of a rarefied gas. 

2. Flow of viscous fluid in porous media. The dynamics of the 

viscous flow of a fluid in pcrous media are governed by the equation of 

conservation of mass 

@ - + a  ap e (pv> = o  
a t  

and Darcy's law 

(2-2) 

where: @ = porosity of the medium 

p = density of the fluid (gm/cc) 

t = time (sec) 

v = the fluid velocity vector (cm/sec) 
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p = pressure in the fluid (dyne/cm2) 

k = permeability of the medium (an2) 

p = viscosity of the fluid (poise) 

Combining Equations 2-2 and 2-3 ,  

For isothermal flow of a slightly compressible fluid, k 

and p can be assumed constant, in addition, if spatial variation in p 

is neglected, we obtain the standard linear diffusion equation: 

where c is the isothermal compressibility defined as 

For isothermal flow of a compressible fluid, permeability 

can still be assumed constant, and we proceed from Equation 2-4 as follows. 

Utilizing the modified perfect gas law (Katz et al., 19591, 

P = Z(P)PRT 

where : Z (p) = compressibility factor (dimensionless) 

R = gas constant 



2- 7 

Tntroduce now the in t eg ra l  transform (Al-Hussainy, Ramey, Crawford, 1966) 

where PO is  some reference pressure. Equation 2-8 then becomes: 

02m(p) - - ~ J I . ~ ( P ) C ( P ~  am(p) 
k a t  

H e r e  we have made use of the re la t ion :  

(2-10) 

(2-11) 

Equation 2-10 is ,  i n  general ,  nonl inear ,as  are Equations 2-8 and 2-9. 

However, it can be shown (Ruche, 1968) t h a t  fo r  judicious choice of P O ,  

the reciprocal  of d i f f u s i v i t y  can be approximated by 

(2-12) 

where b and 6 are constants. 

replace p by m; and our governing equation assumes the quas i l inear  form 

Thus, a s  the dependent var iab le ,  we can 

13 am V2m = ~m - a t  (2-13) 

where D is a constant. 
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A solution of Equation 2-13 corresponding to linear, one 

dimensional flow exists (Friedman, 1958); however, the axisymmetric 

problem for this equation corresponding to the disc source, has not yet 

been examined. 

In the event that steady state conditions are reached, 

an approximate analogy between the flow of compressible and slightly 

compressible fluids is drawn as follows. Rearranging Equation 2-8, we 

have 

(2-14) 

If it is assumed that viscosity and the compressibility factor are slowly 

varying functions of pressure, and/or that pressure gradients are small, 

the second term in Equation 2-14 can be neglected, and we obtain 

(2-15) 

It follows that steady flows of both slightly compressible and compressible 

fluids obey Laplace equations, in terms of pressure, and pressure squared, 

respectively. 

3 .  Application of the disc source. Now consider the disc source 

utilizing a slightly compressible fluid. !??he flow is governed by 

(2-16) 



t > 0 ,  a < r < a  

lim p(r, z ,  t) = 0 t > O , O < Z < a J  
r+-J 

2-9 

(2-17) 

(2-18) 

(2-19) 

(2-20) 

Here, r and z are cylindrical polar coordinates (cm), a is the radius of 
the disc (cm) , and Q the applied volumetric flow rate (cm3/sec). 
solution of this equation is fully documented by Selim, Fatt, and Somerton 

(1963). In general, permeability is determined numerically from the 

relation : 

"he 

r 2  + 1 - 2 r cos e de 
T I 1 - r cos e *1/2 

T312 J: 
-- 

1 + r2- 2 r2cos e 

- - r  
a where: r = - (dimensionless) 

- 4kt 
T = -  (dimensionless) 

a2@1-lc 

erfc = the complementary error function 

H = the Heaviside unit function defined: 
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1 > o  
1/2 x = 0 

0 x < o  

(2-22) 

Equation 2-21 is shown plotted in Figure 2-5. In the event that steady 

state is reached, Equation 2-21 simplifies to 

de p(r, 0)ITka 1 IT 1 - z cos e = -  
lJQ 1/2 

(2-23) 

This integral can be evaluated directly in terms of elliptic integral 

of the first and third kinds. 

Here the approximate analogy between the flow of compressible 

and slightly compressible fluids, cf. Equation 2-15, is applicable, and 

the corresponding steady state solution for a compressible fluid becomes: 

(2-24) 

Equations 2-23 and 2-24 are shown plotted in Figure 6. 

4. Flow of a rarefied gas in porous media. A theory has been 

developed by Cercignani and Sernagiotto for the flow of a rarefied gas in 

a circular capillary (Cercignani, Sernagiotto, 1966). The analysis proceeds 

directly from the Boltzmann equation, and utilizes the Bhatnager-Gross- 

Krook model for the collision integral (see, Vincenti, Kruger, 1965) .  

Diffuse reflection at the capillary wall is assumed, and a length-to-radius 

ratio large compared to 1 is required. 

quently reduced to an integral equation, which is solved numerically. As 

noted by the authors, the mass flow rate predicted is in excellent agreement 

The Boltzmann equation is subse- 
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with experimental observation for all mudsen numbers, 

applicable work here is that of Lund and Berman (1966) e 

general in scope than the above (finite length-to-radius ratio and some 

deviation from diffuse scattering at the wall), the analysis of this work 

is at best semi-empirical, The following expression is obtained for the 

dimensionless flow rate Q: 

Some particularly 

While more 

8F + "11 + 4.357 9 =  
3[& + (20/9B)$] * 1 + (0.592 &/B)$ 

with 

(2-25) 

(2-26) 

Here, 4 and 8 are, respectively, the dimensionless mass flow rate and 
inverse Knudsen number introduced by Cercignani and Sernagiotto (19661, 

while B is a collision integral parameter, of order one. 

It should be emphasized that the above analyses are 

restricted to small relative pressure differences between ends of the 

capillary. 

and is equally rarefied at all stations along the capillary. When the 

pressure difference between capillary ends is a significant fraction of 

the average pressure, some recent experimental data are available 

(Sreekanth, 1968). As a result, this case is more pertinent to the lunar 

problem. However, no rigorous theory appears to exist currently for this 

case e 

The flow is then characterized by a constant Knudsen number, 

Huang and Ramsey have suggested an interpolating formula 

for predicting flow through capillaries at arbitrary rarefaction and 

pressure variation, and have extended the analysis to porous media (Huang, 

Ramsey, 1968). For an ensemble of circular capillaries, they give 
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(2-27) 

where 

C = fDm 0.7118 + 0.0736 (2-28) 

(2-29) 

The subscripts 0, 1, 2 refer to reference conditions, and conditions at 

the front and back ends of the capillary, respectively. Here L is the 

length of the capillary; r the radius, representative of a mean pore 
radius; f a dimensionless constant, determined expeximentally, relating 

the capillary arrangement to the total flow rate (i.e., the effective 

area fraction); A = Trr ; Ap = (pi + p2)/2, and Dm the Knudsen diffusivity; 

- 

- -2 - 
- - - 

= 2 ’=/3,  where is the mean molecular speed. v = (8 RT/Tr) 3’2 where Dm 
T is temperature. 

not assured, and the experimental evidence is limited to the case of 

atmospheric pressure on the low pressure side. 

However, the validity of this interpolation scheme is 

5. Practical considerations. In the design of a surface 

permeability probe, due consideration must be given to size, weight, 

durability requirements, etc. Conceptually, it seems feasible to utilize 

a waste gas, such as C02. In view of current practice on earth, a 

miniaturization of the probe is suggested. However, any miniaturization 

is limited by the requirement that the source diameter be large compared 

to the pore dimensions. 

The possibility of obtaining steady state measurements 

can be examined only in an approximate sense from the form of the 

dimensionless time for flow of a slightly compressible fluid, T = 4 kt/@pca2. 

We let ‘r = 10 correspond to steady state, and take 4 = 0.2, p = 0.01 5 
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centipoises, a = 1 mm, and consider an "average" pressure of 1 psi, For 

high permeability rocks, k 

whereas for low permability rocks, k N cm2# t is of the order of 

years. Thus, steady state measurements would only appear possible for 

high permeabilities. 

cm28 t is of the order of a few minutes, 

Surface devices geometrically similar to the one proposed 

here have been successfully used to determine the permeability of soils 

on earth. A fundamental description is presented by Evans and Kirkham 

(1949). Notably, the theory requires experimental determination of an 

effective shape factor, and is applicable only to steady state measurements. 

In an attempt to gain merely some physical feeling for 

such a probe, some highly simplified preliminary experiments were conducted. 

A crude probe was used, consisting of a small diameter (1/4 in.) copper 

tubing inserted through a rubber stopper. The dimensions are much larger 

than for the envisioned lunar probe. The stopper was placed firmly against 

flat surfaces of selected rock samples, and air was pumped through the 

tube. Utilizing Darcy's law for spherically symmetric flow, permeabilities 

were calculated which were of the same order of magnitude as the values 

obtained from conventional means. 

111. THERMAL CONDUCTIVITY MEASUHDENT 

A. Measurement with Surface Contact Probe 

1. Conceptual description of probe. In this section, two 

simple configurations are examined, one utilizing a disc source, the 

other a ring source, cf. Figures 2-2 and 2-3. In both configurations, 

the heat source and a contact temperature sensor are imbedded in an 

insulating circular skirt; the radius of the skirt is of the order of 

ten source radii." 

the center of the ring. 

at an arbitrary station in the skirt and, as in the case of the disc 

fluid source, accuracy may be improved by use of additional sensors. 

For the ring source, the sensor is positioned at 

For the disc source, the sensor can be positioned 

* 
Beyond this value of r, no sharp temperature gradients exist, and there 
is no effective heat flow out of the surface. 
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A single switch activates the heat source and a timer linked to the 

temperature sensor. A record of material surface temperature versus time 

is thus achieved. If a constant heat input is maintained, and the 

density and heat capacity of the material are known or assumed, thermal 

conductivity can then be calculated. 

The analysis here assumes perfect thermal contact between 

heat source and lunar material. This is an idealization and is discussed 

below. 

a. Disc heat source. The temperature distribution due 

to a disc heat source is analogous to the pressure distribution resulting 

from a disc source utilizing a slightly compressible fluid. We simply 

by a in Equation 2-21 and Figure 2-5. replace %% by -JJ and - KT k 
I-IQ 4 w  

) 'I2 d8 + (2-30) r 2 + 1 - 2 r c o s e  erfc [ 1 - r cos 8 
1/2 

+ 11" ' ( r 2  + 1 - 2 2 cos e)  

I de 1 - 2 cos e P2 + 1 - 2  r cos e p 2  

" 1 /2 ew( - T ': 1 + 2 2  - 2 r cos e 
-- 

where: IC = thermal conductivity (cal/cm sec OK) 

a = thermal diffusivity (cm2/sec) 

T = temperature (OK) 

Q = the constant heat rate/unit area supplied (cal/cm2 sec) 

T = 4 at/a2 (dimensionless) 

b. Ring heat source. The temperature distribution due - 
to a ring source is governed by: 

(2-31) 
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T ( r ,  z,. 0) = 0 

2T - (r, 0, t) = 0 
a2 

l i m  T ( r ,  z ,  t) = 0 t > 0 , o  - < z 
rt” 

(2-32) 

(2-33) 

(2-34) 

The e f f e c t  of the r ing  source can be accounted fo r  by d i s t r ibu t ing  an 

instantaneous hea t  source of fixed s t rength  uniformly about a circle of 

radius a i n  the plane z = 0, and then integrat ing t o  t i m e  t. If follows 

t h a t  the temperature measured by the sensor is: 

a T(0, 0,  T) = - ‘ e r f c  - 
Az 2 ‘ma (2-35) 

where q is the constant rate of heat input .  A device of t h i s  type has 

been successfully applied to  the laboratory measurement o f  rock 

conductivity (Massahebi , 1966) . 
c. The problem of contact  res is tance.  Whenever an in te r -  

face between two contacting materials is not geometrically smooth, there  

e x i s t s  an e f f ec t ive  res i s tance  to  heat  flow across the in t e r f ace  due t o  

the nonuniformity of the thermal contact.  Clearly such contact res i s tance  

w i l l  e x i s t  f o r  any surface thermal probe. Few attempts have been made a t  

analyzing t h i s  general problem and one is not attempted here. However, 

it does s e e m  physically reasonable t h a t  the magnitude of the contact  

res i s tance  w i l l  increase as: 

(1) the height of any surface protrusions increases 

(2) the ne t  contact area between the surfaces 

decreases 

(3 )  the thermal conduct ivi t ies  of the two surfaces 

increase 
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These postulates  a re  confirmed i n  an analysis  by Fenech and Rohsenow 

(1963)- They der ive an expression f o r  the e f f ec t ive  conductance, i n  

the absence of rad ia t ion ,  of a nonuniform in te r face  ideal ized to  cons is t  

of cy l indr ica l  protrusions.  Applied t o  our d isc  probe, t h i s  becomes: 

(2-36) 

where: h = the  in te r face  conductance (cal/cm sec OK, hc = 00 f o r  per fec t  
C 

thermal contact)  

IC = thermal conductivity of the  probe (cal/cm sec OK) 

K = thermal conductivity of lunar material (cal/cm sec OK) 
P 

6 = the  height of an average lunar surface protrusion ( c m ,  

assuming the  d i sc  is smooth) 

n = the  average number of protrusions contacting the d i s c  per 

u n i t  area 

& = A /A, A being the contacting area of an average protrusion 
C C 

and A = Ta2, the surface area of the d i sc  

Notably, f o r  K << IC, the e f f e c t  of the nonuniform contact is diminished. 

Hence, a design cr i ter ion f o r  the d i sc  hea t  source i s  t h a t  i ts thermal 

conductivity be s m a l l  compared t o  t h a t  of the lunar mater ia l .  

P 

d. Significance of r ad ia t ive  t ransfer .  In  the preceding 

analysis ,  thermal conductivity has been assumed constant ,  independent of 

temperature. Subsequently, the influence of rad ia t ive  heat  t ranspor t  has 

been neglected. For p a r t i c u l a t e  materials and vesicular  mater ia ls  of 

high porosi ty ,  the  r e l a t i v e  contribution of radiat ion t o  hea t  t ranspor t  

may be q u i t e  s ign i f i can t  i n  the lunar temperature range. In  the event 

t h a t  lunar mater ia l  is used i n  constructing a heat  sh ie ld ,  a knowledge 

of the signif icance of rad ia t ion  would be necessary. I n  general ,  whenever 
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sharp temperature gradients existr  rad ia t ive  heat  t r ans fe r  and the tempera- 

ture dependence of the material conductivity w i l l  probably be important. 

Some basic  s tud ies  have been made i n  t h i s  area (Wechsler and Glaser, 

1964; Linsky, 1966; Halajian e t  a l . ,  1967; Ulrichs, 19681, but there  

i s  a clear-cut need fo r  addi t ional  work with appropriate experimentation, 

pa r t i cu la r ly  f o r  consolidated materials. 

2. Prac t ica l  considerations. In  the design of any portable 

device for i n  s i t u  measurement, due consideration must be given t o  s i z e ,  

weight, du rab i l i t y ,  power requirements, etc. Conceptually, the surface 

contact probe presents no d i f f i c u l t i e s  i n  t h i s  respect .  However, any 

miniaturization i s  l imited by the requirement that  the source diameter 

be large compared t o  the dimension of any surface cracks or protrusions.  

Present knowledge of the lunar surface would seem t o  indicate  that a 

source diameter of the order of one centimeter is feasible .  The possi- 

b i l i t y  of obtaining steady state measurements can be examined d i r e c t l y  

f r o m  the form of the dimensionless t i m e  i n  Equation 2-30, T = 4 at/a . 
Letting T = l o 5  correspond t o  steady state,  c f .  Figure 2-5, and considering 

the maximum expected value of thermal d i f fus iv i ty ,  a = 

2 

cm2/sec, we 

have 

- -  - 2.5 x l o 7  sec/cm2 
a2 

For a source diameter of one centimeter, steady state would be achieved 

a t  the e a r l i e s t  a f t e r  approximately e ight  weeks, and thus such measure- 

ments do not  appear feasible .  

In  the surface thermal probe, a contact temperature sensor 

is  imbedded i n  an insu la t ing  s k i r t  which rests on the lunar material. 

A requirement f o r  the sensor is  therefore tha t  it be es sen t i a l ly  non- 

conducting and/or of such s m a l l  s i ze  that  the insulat ing nature of the  

surface boundary be preserved. Since the measurements w i l l  be t rans ien t ,  

the sensor must have a f a s t  response t i m e .  In  addition, there  are the 

usual requirements of accuracy, s ens i t i v i ty ,  and s t a b i l i t y .  
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In view of these general requirements and the desirability 

of a simple data readout, the platinum resistance thermometer and quartz 

crystal transducer seem to be the most suitable of t he  currently marketed 

devices, In addition, a fairly recent device still under development, the 
nuclear quadrupole resonance thermometer (NQR), should be given serious 

consideration. The NQR thermometer has the following basic advantages: 

(1) digital output, (2) long-term stability, (3) high sensitivity, 

(4) direct measurement of absolute temperature, (5) solid state design, and 

(6) l o w  voltage requirements (Lunar Heat Flow Measurement, 1966). 

3. Possible Use of Remote Sensing Probe 

A problem inherent in any contact surface probe design is the 

non-uniformity of thermal contact due to surface roughness of the material 

being measured. In general, the significance of contact resistance is 

difficult to analyze. Therefore it seemed reasonable to examine, if in 

but a highly simple-minded manner, the feasibility of a device in which 

neither the neat source nor temperature sensor were in contact with the 

lunar material a 

The idea of a remote sensing thermal probe is not a new one, 

and was incorporated in two earlier design studies for multipurpose borehole 

probes (Lunar Surface and Subsurface Probes for Apollo Application Program, 

1966; Study of Lunar  Geophysical Surface and Subsurface Probes for Apollo 

Application Program, 1966). The concept introduced here, while different 

in layout employs the same electronics as in these earlier schemes. That 

is, it is proposed that surface temperature be measured by an infrared device 

of the Michaelson interferometer type making use of a bolometer detector. 

Surface spectral emissivity is measured by an infrared spectrometer. 

. 

A schematic of the system is contained in Figure 4. The surface 

is heated by a symmetric element such as a ring source. In the center of 

the source is the electronics package, which is thermally insulated from the 

source. 

ture measurement could be provided by making such measurements after the 

source has been activated for a given time, 

Further insurance that source emission does not influence tempera- 
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An additional, outer shield protects the surface from any solar 

radiation, Just as for the proposed surface contact probes, a record of 

surface temperature versus time, along with khe heat input and a knowledge 

of density and heat capacity, would yield thermal conductivity. 

IV. CONCLUSIONS 

In summary, this report has presented some basic analysis of fluid 

flow through porous media, and simplified approaches to the problem of 

in situ measurement of lunar permeability and thermal conductivity. It 

is our conclusion, that there is a definite need for the following investi- 

gations : 

A. 

B. 

C .  

D. 

Theoretical and experimental work on fluid flow through 

consolidated materials in vacuo. 

Experimental work on applicability of surface probes in 

measuring permeability of soils and rocks in vacuo. 

Basic experimental. work on heat flow through both consolidated 

and unconsolidated materials in vacuo. 

Experimental work on applicability of surface probe for 

in-vacuo measurement of thermal conductivity. 
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SYMBOLS 

a radius of f l u i d  (or heat)  source 

A 

A 

AC 

E Ta2 area of d i sc  source 

E TP cross sec t iona l  area of an average pore 
- 

contacting area of average protrusion 

b constant [ cf . Equation 2-12 I 

B dimensionless co l l i s ion  in t eg ra l  parameter 

C isothermal compressibil i ty 

C constant [cf .  Equation 2-281 

d average pore dimension 

d median grain diameter 

D constant [cf .  Equation 2-131 

E 2 v r/3 Knudsen d i f f u s i v i t y  

m 

- -- 
Dm 
E 

f 

F 

hC 

H 

k 

K n  

m 

n 

P 

PO 

P1 

reference constant [cf. Equation 2-291 

e f f ec t ive  area f rac t ion  

function of 8 and B [c f .  Equation 2-261 

in t e r f ace  conductance 

Heaviside u n i t  function 

permeability 

Knudsen number 

i n t e g r a l  transform of pressure [cf. Equation 2091 

number of protrusions/unit  area contracting d i sc  source 

pressure 

reference pressure 

pressure a t  f ron t  of cap i l la ry  
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p2 

5l heat flow rate 

Q dimensional volumetric flow rate 

Qo dimensional volumetric flow rate 

pressure at end of capillary 

dimensionless mass flow rate 

radial coordinate in cylindrical polar system r 

r capillary radius 

r 

R gas constant (for a particular gas) 

t time 

T temperature 

V velocity 

V mean thermal speed 

X dummy variable 

Y 

f r/a dimensionless radial coordinate in cylindrical polar system 

- 

z axial coordinate in cylindrical polar system 

Z compressibility 

a thermal diffusivity 

B constant [cf. Equation 2-12] 

6 

8 inverse Knudsen number 

E = Ac/A 

8 dummy variable 

K 

K thermal conductivity of probe 

x mean free path 

Xo 

1-i viscosity 

P density 

average height of surface protrusion 

- 

thermal conductivity of porous medium 

P 

mean free path at reference conditions 
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T' 

4 porosi ty  

Q 

Z 4 k.t/a2($uc dimensionless t i m e  

applied heat flow ra te /uni t  area 
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FIG 2-1 
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FIG 2-2 
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FIG 2-3 
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IO0 10 1 0. I 9 

FIG 2-5: Dimensionless pressirre and temperature r i se  a t  the surface for  disc 
source ( a f t e r  Selim, F a t t ,  and Somerton [17]). 

I I I .I 

FIG 2-6: Steady s t a t e  dimensionless pressure a t  the surface for disc source 
with compressible and s l igh t ly  compressible fltiids. 


