608 research outputs found
Triplet superconducting pairing and density-wave instabilities in organic conductors
Using a renormalization group approach, we determine the phase diagram of an
extended quasi-one-dimensional electron gas model that includes interchain
hopping, nesting deviations and both intrachain and interchain repulsive
interactions. We find a close proximity of spin-density- and
charge-density-wave phases, singlet d-wave and triplet f-wave superconducting
phases. There is a striking correspondence between our results and recent
puzzling experimental findings in the Bechgaard salts, including the
coexistence of spin-density-wave and charge-density-wave phases and the
possibility of a triplet pairing in the superconducting phase.Comment: 4 pages, 5 eps figure
Mechanism for the Singlet to Triplet Superconductivity Crossover in Quasi-One-Dimensional Organic Conductors
Superconductivity of quasi-one-dimensional organic conductors with a
quarter-filled band is investigated using the two-loop renormalization group
approach to the extended Hubbard model for which both the single electron
hopping t_{\perp} and the repulsive interaction V_{\perp} perpendicular to the
chains are included. For a four-patches Fermi surface with deviations to
perfect nesting, we calculate the response functions for the dominant
fluctuations and possible superconducting states. By increasing V_{\perp}, it
is shown that a d-wave (singlet) to f-wave (triplet) superconducting state
crossover occurs, and is followed by a vanishing spin gap. Furthermore, we
study the influence of a magnetic field through the Zeeman coupling, from which
a triplet superconducting state is found to emerge.Comment: 11 pages, 15 figures, published versio
Role of Interchain Hopping in the Magnetic Susceptibility of Quasi-One-Dimensional Electron Systems
The role of interchain hopping in quasi-one-dimensional (Q-1D) electron
systems is investigated by extending the Kadanoff-Wilson renormalization group
of one-dimensional (1D) systems to Q-1D systems. This scheme is applied to the
extended Hubbard model to calculate the temperature () dependence of the
magnetic susceptibility, . The calculation is performed by taking
into account not only the logarithmic Cooper and Peierls channels, but also the
non-logarithmic Landau and finite momentum Cooper channels, which give relevant
contributions to the uniform response at finite temperatures. It is shown that
the interchain hopping, , reduces at low temperatures,
while it enhances at high temperatures. This notable
dependence is ascribed to the fact that enhances the
antiferromagnetic spin fluctuation at low temperatures, while it suppresses the
1D fluctuation at high temperatures. The result is at variance with the
random-phase-approximation approach, which predicts an enhancement of by over the whole temperature range. The influence of both the
long-range repulsion and the nesting deviations on is further
investigated. We discuss the present results in connection with the data of
in the (TMTTF) and (TMTSF) series of Q-1D organic
conductors, and propose a theoretical prediction for the effect of pressure on
magnetic susceptibility.Comment: 17 pages, 19figure
The response of the tandem pore potassium channel TASK-3 (K2P9.1) to voltage : gating at the cytoplasmic mouth
Although the tandem pore potassium channel TASK-3 is thought to open and shut at its
selectivity filter in response to changes of extracellular pH, it is currently unknown whether the
channel also shows gating at its inner, cytoplasmic mouth through movements of membrane
helices M2 and M4.We used two electrode voltage clamp and single channel recording to show
that TASK-3 responds to voltage in a way that reveals such gating. In wild-type channels, Popen
was very low at negative voltages, but increased with depolarisation. The effect of voltage was
relatively weak and the gating charge small, ∼0.17.Mutants A237T (in M4) and N133A (in M2)
increased Popen at a given voltage, increasing mean open time and the number of openings per
burst. In addition, the relationship between Popen andvoltagewas shifted to lesspositive voltages.
Mutation of putative hinge glycines (G117A, G231A), residues that are conserved throughout
the tandem pore channel family, reduced Popen at a given voltage, shifting the relationship
with voltage to a more positive potential range. None of these mutants substantially affected
the response of the channel to extracellular acidification. We have used the results from single
channel recording to develop a simple kinetic model to show how gating occurs through two
classes of conformation change, with two routes out of the open state, as expected if gating
occurs both at the selectivity filter and at its cytoplasmic mouth
Superconductivity and Density Wave in the Quasi-One-Dimensional Systems: Renormalization Group Study
The anisotropic superconductivity and the density wave have been investigated
by applying the Kadanoff-Wilson renormalization group technique to the
quasi-one-dimensional system with finite-range interactions. It is found that a
temperature (T) dependence of response functions is proportional to exp(1/T) in
a wide region of temperature even within the one-loop approximation. Transition
temperatures are calculated to obtain the phase diagram of the
quasi-one-dimensional system, which is compared with that of the
pure-one-dimensional system. Next-nearest neighbor interactions (V_2) induce
large charge fluctuations, which suppress the d_{x^2 -y^2}-wave singlet
superconducting (dSS) state and enhance the f-wave triplet superconducting
(fTS) state. From this effect, the transition temperature of fTS becomes
comparable to that of dSS for large V_2, so that field-induced f-wave triplet
pairing could be possible. These features are discussed to comprehend the
experiments on the (TMTSF)_2PF_6 salt.Comment: 8 pages, 4 figures, submitted to J. Phys. Soc. Jp
Superconducting pairing and density-wave instabilities in quasi-one-dimensional conductors
Using a renormalization group approach, we determine the phase diagram of an
extended quasi-one-dimensional electron gas model that includes interchain
hopping, nesting deviations and both intrachain and interchain repulsive
interactions. d-wave superconductivity, which dominates over the
spin-density-wave (SDW) phase at large nesting deviations, becomes unstable to
the benefit of a triplet -wave phase for a weak repulsive interchain
backscattering term , despite the persistence of dominant SDW
correlations in the normal state. Antiferromagnetism becomes unstable against
the formation of a charge-density-wave state when exceeds some
critical value. While these features persist when both Umklapp processes and
interchain forward scattering () are taken into account, the effect
of alone is found to frustrate nearest-neighbor interchain - and
-wave pairing and instead favor next-nearest-neighbor interchain singlet or
triplet pairing. We argue that the close proximity of SDW and
charge-density-wave phases, singlet d-wave and triplet -wave superconducting
phases in the theoretical phase diagram provides a possible explanation for
recent puzzling experimental findings in the Bechgaard salts, including the
coexistence of SDW and charge-density-wave phases and the possibility of a
triplet pairing in the superconducting phase.Comment: 19 pages, 13 figure
The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains
We have investigated the contribution to ionic
selectivity of residues in the selectivity filter and pore
helices of the P1 and P2 domains in the acid sensitive
potassium channel TASK-1. We used site directed mutagenesis
and electrophysiological studies, assisted by structural
models built through computational methods. We have
measured selectivity in channels expressed in Xenopus
oocytes, using voltage clamp to measure shifts in reversal
potential and current amplitudes when Rb+ or Na+ replaced
extracellular K+. Both P1 and P2 contribute to selectivity,
and most mutations, including mutation of residues in the
triplets GYG and GFG in P1 and P2, made channels nonselective.
We interpret the effects of these—and of other
mutations—in terms of the way the pore is likely to be
stabilised structurally. We show also that residues in the
outer pore mouth contribute to selectivity in TASK-1.
Mutations resulting in loss of selectivity (e.g. I94S, G95A)
were associated with slowing of the response of channels to
depolarisation. More important physiologically, pH sensitivity
is also lost or altered by such mutations. Mutations
that retained selectivity (e.g. I94L, I94V) also retained their
response to acidification. It is likely that responses both to
voltage and pH changes involve gating at the selectivity filter
Selective involvement of serum response factor in pressure-induced myogenic tone in resistance arteries
OBJECTIVE: In resistance arteries, diameter adjustment in response to pressure changes depends on the vascular cytoskeleton integrity. Serum response factor (SRF) is a dispensable transcription factor for cellular growth, but its role remains unknown in resistance arteries. We hypothesized that SRF is required for appropriate microvascular contraction. METHODS AND RESULTS: We used mice in which SRF was specifically deleted in smooth muscle or endothelial cells, and their control. Myogenic tone and pharmacological contraction was determined in resistance arteries. mRNA and protein expression were assessed by quantitative real-time PCR (qRT-PCR) and Western blot. Actin polymerization was determined by confocal microscopy. Stress-activated channel activity was measured by patch clamp. Myogenic tone developing in response to pressure was dramatically decreased by SRF deletion (5.9+/-2.3%) compared with control (16.3+/-3.2%). This defect was accompanied by decreases in actin polymerization, filamin A, myosin light chain kinase and myosin light chain expression level, and stress-activated channel activity and sensitivity in response to pressure. Contractions induced by phenylephrine or U46619 were not modified, despite a higher sensitivity to p38 blockade; this highlights a compensatory pathway, allowing normal receptor-dependent contraction. CONCLUSIONS: This study shows for the first time that SRF has a major part to play in the control of local blood flow via its central role in pressure-induced myogenic tone in resistance arteries
Ultracarbonaceous Antarctic micrometeorites recovered from snow at the Dome C - CONCORDIA station.
第6回極域科学シンポジウム[OA] 南極隕石11月17日(火) 国立国語研究所 2階 講
- …