216 research outputs found

    A Non-Perturbative Superpotential With E8E_8 Symmetry

    Get PDF
    We compute the non-perturbative superpotential in FF-theory compactification to four dimensions on a complex three-fold ¶1×S\P^1\times S, where SS is a rational elliptic surface. In contrast to examples considered previously, the superpotential in this case has interesting modular properties; it is essentially an E8E_8 theta function.Comment: Additional references and clarifications. Latex, 10 page

    Invariant Homology on Standard Model Manifolds

    Full text link
    Torus-fibered Calabi-Yau threefolds Z, with base dP_9 and fundamental group pi_1(Z)=Z_2 X Z_2, are reviewed. It is shown that Z=X/(Z_2 X Z_2), where X=B X_{P_1} B' are elliptically fibered Calabi-Yau threefolds that admit a freely acting Z_2 X Z_2 automorphism group. B and B' are rational elliptic surfaces, each with a Z_2 X Z_2 group of automorphisms. It is shown that the Z_2 X Z_2 invariant classes of curves of each surface have four generators which produce, via the fiber product, seven Z_2 X Z_2 invariant generators in H_4(X,Z). All invariant homology classes are computed explicitly. These descend to produce a rank seven homology group H_4(Z,Z) on Z. The existence of these homology classes on Z is essential to the construction of anomaly free, three family standard-like models with suppressed nucleon decay in both weakly and strongly coupled heterotic superstring theory.Comment: 57 pages, 13 figure

    Torus-Fibered Calabi-Yau Threefolds with Non-Trivial Fundamental Group

    Get PDF
    We construct smooth Calabi-Yau threefolds Z, torus-fibered over a dP_9 base, with fundamental group Z_2 X Z_2. To do this, the structure of rational elliptic surfaces is studied and it is shown that a restricted subset of such surfaces admit at least a Z_2 X Z_2 group of automorphisms. One then constructs Calabi-Yau threefolds X as the fiber product of two such dP_9 surfaces, demonstrating that the involutions on the surfaces lift to a freely acting Z_2 X Z_2 group of automorphisms on X. The threefolds Z are then obtained as the quotient Z=X/(Z_2 X Z_2). These Calabi-Yau spaces Z admit stable, holomorphic SU(4) vector bundles which, in conjunction with Z_2 X Z_2 Wilson lines, lead to standard-like models of particle physics with naturally suppressed nucleon decay.Comment: 60 pages, 13 figures, Typos correcte

    Vector Bundle Moduli Superpotentials in Heterotic Superstrings and M-Theory

    Get PDF
    The non-perturbative superpotential generated by a heterotic superstring wrapped once around a genus-zero holomorphic curve is proportional to the Pfaffian involving the determinant of a Dirac operator on this curve. We show that the space of zero modes of this Dirac operator is the kernel of a linear mapping that is dependent on the associated vector bundle moduli. By explicitly computing the determinant of this map, one can deduce whether or not the dimension of the space of zero modes vanishes. It is shown that this information is sufficient to completely determine the Pfaffian and, hence, the non-perturbative superpotential as explicit holomorphic functions of the vector bundle moduli. This method is illustrated by a number of non-trivial examples.Comment: 81 pages, LaTeX, corrected typo

    The Dynamics of Small Instanton Phase Transitions

    Full text link
    The small instanton transition of a five-brane colliding with one end of the S1/Z2 interval in heterotic M-theory is discussed, with emphasis on the transition moduli, their potential function and the associated non-perturbative superpotential. Using numerical methods, the equations of motion of these moduli coupled to an expanding Friedmann-Robertson-Walker spacetime are solved including non-perturbative interactions. It is shown that the five-brane collides with the end of the interval at a small instanton. However, the moduli then continue to evolve to an isolated minimum of the potential, where they are trapped by gravitational damping. The torsion free sheaf at the small instanton is ``smoothed out'' into a vector bundle at the isolated minimum, thus dynamically completing the small instanton phase transition. Radiative damping at the origin of moduli space is discussed and shown to be insufficient to trap the moduli at the small instanton point.Comment: LaTeX, 23 pages, 7 figures; minor corrections, references adde

    Vector Bundle Moduli and Small Instanton Transitions

    Get PDF
    We give the general presciption for calculating the moduli of irreducible, stable SU(n) holomorphic vector bundles with positive spectral covers over elliptically fibered Calabi-Yau threefolds. Explicit results are presented for Hirzebruch base surfaces B=F_r. The transition moduli that are produced by chirality changing small instanton phase transitions are defined and specifically enumerated. The origin of these moduli, as the deformations of the spectral cover restricted to the ``lift'' of the horizontal curve of the M5-brane, is discussed. We present an alternative description of the transition moduli as the sections of rank n holomorphic vector bundles over the M5-brane curve and give explicit examples. Vector bundle moduli appear as gauge singlet scalar fields in the effective low-energy actions of heterotic superstrings and heterotic M-theory.Comment: 52 pages, LATEX, corrected typo

    SU(4) Instantons on Calabi-Yau Threefolds with Z_2 x Z_2 Fundamental Group

    Full text link
    Structure group SU(4) gauge vacua of both weakly and strongly coupled heterotic superstring theory compactified on torus-fibered Calabi-Yau threefolds Z with Z_2 x Z_2 fundamental group are presented. This is accomplished by constructing invariant, stable, holomorphic rank four vector bundles on the simply connected cover of Z. Such bundles can descend either to Hermite-Yang-Mills instantons on Z or to twisted gauge fields satisfying the Hermite-Yang-Mills equation corrected by a non-trivial flat B-field. It is shown that large families of such instantons satisfy the constraints imposed by particle physics phenomenology. The discrete parameter spaces of those families are presented, as well as a lower bound on the dimension of the continuous moduli of any such vacuum. In conjunction with Z_2 x Z_2 Wilson lines, these SU(4) gauge vacua can lead to standard-like models at low energy with an additional U(1)_{B-L} symmetry. This U(1)_{B-L} symmetry is very helpful in naturally suppressing nucleon decay.Comment: 68 pages, no figure

    SU(5) Heterotic Standard Model Bundles

    Full text link
    We construct a class of stable SU(5) bundles on an elliptically fibered Calabi-Yau threefold with two sections, a variant of the ordinary Weierstrass fibration, which admits a free involution. The bundles are invariant under the involution, solve the topological constraint imposed by the heterotic anomaly equation and give three generations of Standard Model fermions after symmetry breaking by Wilson lines of the intermediate SU(5) GUT-group to the Standard Model gauge group. Among the solutions we find some which can be perturbed to solutions of the Strominger system. Thus these solutions provide a step toward the construction of phenomenologically realistic heterotic flux compactifications via non-Kahler deformations of Calabi-Yau geometries with bundles. This particular class of solutions involves a rank two hidden sector bundle and does not require background fivebranes for anomaly cancellation.Comment: 17 page

    Geometric transitions and integrable systems

    Full text link
    We consider {\bf B}-model large NN duality for a new class of noncompact Calabi-Yau spaces modeled on the neighborhood of a ruled surface in a Calabi-Yau threefold. The closed string side of the transition is governed at genus zero by an A1A_1 Hitchin integrable system on a genus gg Riemann surface ÎŁ\Sigma. The open string side is described by a holomorphic Chern-Simons theory which reduces to a generalized matrix model in which the eigenvalues lie on the compact Riemann surface ÎŁ\Sigma. We show that the large NN planar limit of the generalized matrix model is governed by the same A1A_1 Hitchin system therefore proving genus zero large NN duality for this class of transitions.Comment: 70 pages, 1 figure; version two: minor change

    Vacuum Stability in Heterotic M-Theory

    Full text link
    The problem of the stabilization of moduli is discussed within the context of compactified strongly coupled heterotic string theory. It is shown that all geometric, vector bundle and five-brane moduli are completely fixed, within a phenomenologically acceptable range, by non-perturbative physics. This result requires, in addition to the full space of moduli, non-vanishing Neveu-Schwarz flux, gaugino condensation with threshold corrections and the explicit form of the Pfaffians in string instanton superpotentials. The stable vacuum presented here has a negative cosmological constant. The possibility of ``lifting'' this to a metastable vacuum with positive cosmological constant is briefly discussed.Comment: 39 pages, minor correction
    • …
    corecore