471 research outputs found

    Dipole-dipole instability of atom clouds in a far-detuned optical dipole trap

    Get PDF
    The effect of the dipole-dipole interaction on the far-off-resonance optical dipole trapping scheme is calculated by a mean-field approach. The trapping laser field polarizes the atoms and the accompanying dipole-dipole energy shift deepens the attractive potential minimum in a pancake-shaped cloud. At high density the thermal motion cannot stabilize the gas against self-contraction and an instability occurs. We calculate the boundary of the stable and unstable equilibrium regions on a two-dimensional phase diagram of the atom number and the ratio of the trap depth to the temperature. We discuss the limitations imposed by the dipole-dipole instability on the parameters needed to reach Bose-Einstein condensation in an optical dipole trap.Comment: 8 pages, 3 figure

    Tests of Basic Quantum Mechanics in Oscillation Experiments

    Get PDF
    According to standard quantum theory, the time evolution operator of a quantum system is independent of the state of the system. One can, however, consider systems in which this is not the case: the evolution operator may depend on the density operator itself. The presence of such modifications of quantum theory can be tested in long baseline oscillation experiments.Comment: 8 pages, LaTeX; no macros neede

    Correlated motion of two atoms trapped in a single mode cavity field

    Full text link
    We study the motion of two atoms trapped at distant positions in the field of a driven standing wave high-Q optical resonator. Even without any direct atom-atom interaction the atoms are coupled through their position dependent influence on the intracavity field. For sufficiently good trapping and low cavity losses the atomic motion becomes significantly correlated and the two particles oscillate in their wells preferentially with a 90 degrees relative phase shift. The onset of correlations seriously limits cavity cooling efficiency, raising the achievable temperature to the Doppler limit. The physical origin of the correlation can be traced back to a cavity mediated cross-friction, i.e. a friction force on one particle depending on the velocity of the second particle. Choosing appropriate operating conditions allows for engineering these long range correlations. In addition this cross-friction effect can provide a basis for sympathetic cooling of distant trapped clouds.Comment: 10 pages, 9 figures, accepted for publication in Phys. Rev. A. Minor grammatical changes to previous versio

    A topological classification of convex bodies

    Get PDF
    The shape of homogeneous, generic, smooth convex bodies as described by the Euclidean distance with nondegenerate critical points, measured from the center of mass represents a rather restricted class M_C of Morse-Smale functions on S^2. Here we show that even M_C exhibits the complexity known for general Morse-Smale functions on S^2 by exhausting all combinatorial possibilities: every 2-colored quadrangulation of the sphere is isomorphic to a suitably represented Morse-Smale complex associated with a function in M_C (and vice versa). We prove our claim by an inductive algorithm, starting from the path graph P_2 and generating convex bodies corresponding to quadrangulations with increasing number of vertices by performing each combinatorially possible vertex splitting by a convexity-preserving local manipulation of the surface. Since convex bodies carrying Morse-Smale complexes isomorphic to P_2 exist, this algorithm not only proves our claim but also generalizes the known classification scheme in [36]. Our expansion algorithm is essentially the dual procedure to the algorithm presented by Edelsbrunner et al. in [21], producing a hierarchy of increasingly coarse Morse-Smale complexes. We point out applications to pebble shapes.Comment: 25 pages, 10 figure

    Optical discrimination between spatial decoherence and thermalization of a massive object

    Full text link
    We propose an optical ring interferometer to observe environment-induced spatial decoherence of massive objects. The object is held in a harmonic trap and scatters light between degenerate modes of a ring cavity. The output signal of the interferometer permits to monitor the spatial width of the object's wave function. It shows oscillations that arise from coherences between energy eigenstates and that reveal the difference between pure spatial decoherence and that coinciding with energy transfer and heating. Our method is designed to work with a wide variety of masses, ranging from the atomic scale to nano-fabricated structures. We give a thorough discussion of its experimental feasibility.Comment: 2 figure

    Discrete-Continuous ADMM for Transductive Inference in Higher-Order MRFs

    Full text link
    This paper introduces a novel algorithm for transductive inference in higher-order MRFs, where the unary energies are parameterized by a variable classifier. The considered task is posed as a joint optimization problem in the continuous classifier parameters and the discrete label variables. In contrast to prior approaches such as convex relaxations, we propose an advantageous decoupling of the objective function into discrete and continuous subproblems and a novel, efficient optimization method related to ADMM. This approach preserves integrality of the discrete label variables and guarantees global convergence to a critical point. We demonstrate the advantages of our approach in several experiments including video object segmentation on the DAVIS data set and interactive image segmentation

    Lasing and cooling in a hot cavity

    Full text link
    We present a microscopic laser model for many atoms coupled to a single cavity mode, including the light forces resulting from atom-field momentum exchange. Within a semiclassical description, we solve the equations for atomic motion and internal dynamics to obtain analytic expressions for the optical potential and friction force seen by each atom. When optical gain is maximum at frequencies where the light field extracts kinetic energy from the atomic motion, the dynamics combines optical lasing and motional cooling. From the corresponding momentum diffusion coefficient we predict sub-Doppler temperatures in the stationary state. This generalizes the theory of cavity enhanced laser cooling to active cavity systems. We identify the gain induced reduction of the effective resonator linewidth as key origin for the faster cooling and lower temperatures, which implys that a bad cavity with a gain medium can replace a high-Q cavity. In addition, this shows the importance of light forces for gas lasers in the low-temperature limit, where atoms can arrange in a periodic pattern maximizing gain and counteracting spatial hole burning. Ultimately, in the low temperature limit, such a setup should allow to combine optical lasing and atom lasing in single device.Comment: 11 pages, 6 figure
    corecore