69 research outputs found

    Role of extracellular matrix in gastrointestinal cancer-associated angiogenesis

    Get PDF
    Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients\u2019 outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies

    Multiplex staining depicts the immune infiltrate in colitis-induced colon cancer model

    Get PDF
    Assessment of the host immune response pattern is of increasing importance as highly prognostic and diagnostic, in immune-related diseases and in some types of cancer. Chronic inflammation is a major hallmark in colon cancer formation, but, despite the extent of local inflammatory infiltrate has been demonstrated to be extremely informative, its evaluation is not routinely assessed due to the complexity and limitations of classical immunohistochemistry (IHC). In the last years, technological advance helped in bypassing technical limits, setting up multiplex IHC (mIHC) based on tyramide signal amplification (TSA) method and designing software suited to aid pathologists in cell scoring analysis. Several studies verified the efficacy of this method, but they were restricted to the analysis of human samples. In the era of translational medicine the use of animal models to depict human pathologies, in a more complete and complex approach, is really crucial. Nevertheless, the optimization and validation of this method to species other than human is still poor. We took advantage of Multispectral Imaging System to identify the immunoprofile of Dextran Sulphate Sodium (DSS)-treated mouse colon. We optimized a protocol to sequentially stain formalin fixed paraffin embedded murine colon samples for CD3, CD8a, CD4, and CD4R5B0 antigens. With this approach we obtained a detailed lymphocyte profile, while preserving the morphological tissue context, generally lost with techniques like gene expression profiling or flow cytometry. This study, comparing the results obtained by mIHC with immunophenotyping performed with cytofluorimetric and standard IHC methods validates the potentiality and the applicability of this innovative approach

    Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell

    Get PDF
    More than 10 years have passed since the naming of periostin derived from its expression sites in the periosteum and periodontal ligament. Following this finding, we have accumulated more data on the expression patterns of periostin, and, finally, with the generation of periostin-deficient mice, have revealed functions of periostin in the regeneration of tissues in bone, tooth, heart, and skin, and its action in cancer invasion. Since periostin is a matricellular protein, the first investigation of periostin function showed its enhancement of cell migration by acting outside the cell. On the other hand, recent observations have demonstrated that periostin functions in fibrillogenesis in association with extracellular matrix molecules inside the cell

    Emilin1 gene and essential hypertension: a two-stage association study in northern Han Chinese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elastogenesis of elastic extracellular matrix (ECM) which was recognized as a major component of blood vessels has been believed for a long time to play only a passive role in the dynamic vascular changes of typical hypertension. Emilin1 gene participated in the transcription of ECM's formation and was recognized to modulate links TGF-β maturation to blood pressure homeostasis in animal study. Recently relevant advances urge further researches to investigate the role of Emilin1 gene in regulating TGF-β signals involved in elastogenesis and vascular cell defects of essential hypertension (EH).</p> <p>Methods</p> <p>We designed a two-stage case-control study and selected three single nucleotide polymorphisms (SNPs), rs3754734, rs2011616 and rs2304682 from the HapMap database, which covered Emilin1 gene. Totally 2,586 subjects were recruited from the International Collaborative Study of Cardiovascular Disease in Asia (InterASIA). In stage 1, all the three SNPs of the Emilin1 gene were genotyped and tested within a subsample including 503 cases and 490 controls, significant SNPs would enter into stage 2 including 814 cases with hypertension and 779 controls and analyze on the basis of testing total 2,586 subjects.</p> <p>Results</p> <p>In stage 1, single locus analyses showed that SNPs rs3754734 and rs2011616 had significant association with EH (P < 0.05). In stage 2, weak association for dominant model were observed by age stratification and odds ratio (ORs) of TG+GG vs. TT of rs3754734 were 0.768 (0.584-1.009), 0.985 (0.735-1.320) and 1.346 (1.003-1.806) in < 50, 50-59 and ≥ 60 years group and ORs of GA+AA vs. GG of rs2011616 were 0.745 (0.568-0.977), 1.013 (0.758-1.353) and 1.437 (1.072-1.926) in < 50, 50-59 and ≥ 60 years group respectively. Accordingly, significant interactions were detected between genotypes of rs3754734 and rs2011616 and age for EH, and ORs were 1.758 (1.180-2.620), P = 0.006 and 1.903 (1.281-2.825), P = 0.001, respectively. Results of haplotypes analysis showed that there weren't any haplotypes associated with EH directly, but the interaction of hap2 (GA) and age-group found to be significant after being adjusted for the covariates, OR was 1.220 (1.031-1.444), P value was 0.020.</p> <p>Conclusion</p> <p>Our findings don't support positive association of Emilin1 gene with EH, but the interaction of age and genotype variation of rs3754734 and rs2011616 might increase the risk to hypertension.</p

    The many facets of the matricelluar protein periostin during cardiac development, remodeling, and pathophysiology

    Get PDF
    Periostin is a member of a growing family of matricellular proteins, defined by their ability to interact with components of the extracellular milieu, and with receptors at the cell surface. Through these interactions, periostin has been shown to play a crucial role as a profibrogenic molecule during tissue morphogenesis. Tissues destined to become fibrous structures are dependent on cooperative interactions between periostin and its binding partners, whereas in its absence, these structures either totally or partially fail to become mature fibrous entities. Within the heart, fibrogenic differentiation is required for normal tissue maturation, remodeling and function, as well as in response to a pathological myocardial insult. In this review, aspects related to the function of periostin during cardiac morphogenesis, remodeling and pathology are summarized

    Multiple forms of chicken alpha3(VI) collagen chain generated by alternative splicing in type A repeated domains.

    No full text
    Type VI collagen is a structurally unique component widely distributed in connective tissues. Its molecular structure consists of monomers that have the potential to assemble intracellularly into dimers and tetramers which, once secreted, can form microfilaments by end-to-end association. Individual monomers are composed of chains of Mr = approximately 140,000 (alpha 1 and alpha 2) and greater than 300,000 (alpha 3). Type VI collagen molecules contain a short triple helix with large globular domains at both ends. These domains are made for their greatest part of repetitive units similar to type A repeats of von Willebrand Factor. The alpha 3(VI) chain, contributing most of the mass of the NH2-terminal globule, appeared heterogenous both at the mRNA and protein level. Several alpha 3(VI)-specific clones that lack the sequences corresponding to repeats A8 and A6 were isolated from a chicken aorta cDNA library. Northern blot hybridization of poly (A+)-enriched RNA from chicken gizzard with cDNA fragments corresponding to several individual type A repeats showed that A8- and A6-specific probes did not hybridize to the lower Mr transcripts. Clones spanning approximately 20 kb of the 5'-end of the alpha 3(VI) gene were isolated from a chicken genomic library and subjected to analysis by restriction mapping, Southern blotting, and selective sequencing of the intron-exon boundaries. At the most 5'-end of the gene an additional type A repeat (A9), previously undetected in cDNA clones, was identified. Furthermore, it was determined that the presumed signal peptide and repeats A9 through A6 are encoded within individual exons. Reverse transcription and polymerase chain reaction of aorta RNA suggested that a mechanism of alternative mRNA splicing by a phenomenon of exon skipping generates alpha 3(VI) isoform variants that contain different numbers of type A repeats. Immunohistochemistry of frozen sections of chicken embryo tissues with repeat-specific mAbs showed that an antibody directed against a conditional exon has a more restricted tissue distribution compared to an antibody against a constitutive exon

    Type A modules: interacting domains found in several non-fibrillar collagens and in other extracellular matrix proteins.

    No full text
    A 200-amino acid long motif first recognized in von Willebrand Factor (type A module) has been found in components of the extracellular matrix, hemostasis, cellular adhesion, and immune defense mechanisms. At present the extracellular matrix is the predominant site of expression of type A modules since at least four non-fibrillar collagens and two non-collagenous proteins contain a variable number of modules ranging from one to twelve. The modules conform to a consensus motif made of short conserved subregions separated by stretches of variable length. The proteins that incorporate type A modules participate in numerous biological events such as cell adhesion, migration, homing, pattern formation, and signal transduction after interaction with a large array of ligands
    corecore