163 research outputs found

    3D Variation in delineation of head and neck organs at risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Consistent delineation of patient anatomy becomes increasingly important with the growing use of highly conformal and adaptive radiotherapy techniques. This study investigates the magnitude and 3D localization of interobserver variability of organs at risk (OARs) in the head and neck area with application of delineation guidelines, to establish measures to reduce current redundant variability in delineation practice.</p> <p>Methods</p> <p>Interobserver variability among five experienced radiation oncologists was studied in a set of 12 head and neck patient CT scans for the spinal cord, parotid and submandibular glands, thyroid cartilage, and glottic larynx. For all OARs, three endpoints were calculated: the Intraclass Correlation Coefficient (ICC), the Concordance Index (CI) and a 3D measure of variation (3D SD).</p> <p>Results</p> <p>All endpoints showed largest interobserver variability for the glottic larynx (ICC = 0.27, mean CI = 0.37 and 3D SD = 3.9 mm). Better agreement in delineations was observed for the other OARs (range, ICC = 0.32-0.83, mean CI = 0.64-0.71 and 3D SD = 0.9-2.6 mm). Cranial, caudal, and medial regions of the OARs showed largest variations. All endpoints provided support for improvement of delineation practice.</p> <p>Conclusions</p> <p>Variation in delineation is traced to several regional causes. Measures to reduce this variation can be: (1) guideline development, (2) joint delineation review sessions and (3) application of multimodality imaging. Improvement of delineation practice is needed to standardize patient treatments.</p

    Genome-Wide Gene Expression Analysis Implicates the Immune Response and Lymphangiogenesis in the Pathogenesis of Fetal Chylothorax

    Get PDF
    Fetal chylothorax (FC) is a rare condition characterized by lymphocyte-rich pleural effusion. Although its pathogenesis remains elusive, it may involve inflammation, since there are increased concentrations of proinflammatory mediators in pleural fluids. Only a few hereditary lymphedema-associated gene loci, e.g. VEGFR3, ITGA9 and PTPN11, were detected in human fetuses with this condition; these cases had a poorer prognosis, due to defective lymphangiogenesis. In the present study, genome-wide gene expression analysis was conducted, comparing pleural and ascitic fluids in three hydropic fetuses, one with and two without the ITGA9 mutation. One fetus (the index case), from a dizygotic pregnancy (the cotwin was unaffected), received antenatal OK-432 pleurodesis and survived beyond the neonatal stage, despite having the ITGA9 mutation. Genes and pathways involved in the immune response were universally up-regulated in fetal pleural fluids compared to those in ascitic fluids. Furthermore, genes involved in the lymphangiogenesis pathway were down-regulated in fetal pleural fluids (compared to ascitic fluid), but following OK-432 pleurodesis, they were up-regulated. Expression of ITGA9 was concordant with overall trends of lymphangiogenesis. In conclusion, we inferred that both the immune response and lymphangiogenesis were implicated in the pathogenesis of fetal chylothorax. Furthermore, genome-wide gene expression microarray analysis may facilitate personalized medicine by selecting the most appropriate treatment, according to the specific circumstances of the patient, for this rare, but heterogeneous disease

    Intrafraction motion of the prostate during an IMRT session: a fiducial-based 3D measurement with Cone-beam CT

    Get PDF
    Background: Image-guidance systems allow accurate interfractional repositioning of IMRT treatments, however, these may require up to 15 minutes. Therefore intrafraction motion might have an impact on treatment precision. 3D geometric data regarding intrafraction prostate motion are rare; we therefore assessed its magnitude with pre- and post-treatment fiducial-based imaging with cone-beam-CT (CBCT). Methods: 39 IMRT fractions in 5 prostate cancer patients after (125)I-seed implantation were evaluated. Patient position was corrected based on the (125)I-seeds after pre-treatment CBCT. Immediately after treatment delivery, a second CBCT was performed. Differences in bone- and fiducial position were measured by seed-based grey-value matching. Results: Fraction time was 13.6 +/- 1.6 minutes. Median overall displacement vector length of (125)Iseeds was 3 mm (M = 3 mm, Sigma = 0.9 mm, sigma = 1.7 mm; M: group systematic error, Sigma: SD of systematic error, sigma: SD of random error). Median displacement vector of bony structures was 1.84 mm (M = 2.9 mm, Sigma = 1 mm, sigma = 3.2 mm). Median displacement vector length of the prostate relative to bony structures was 1.9 mm (M = 3 mm, Sigma = 1.3 mm, sigma = 2.6 mm). Conclusion: a) Overall displacement vector length during an IMRT session is &lt; 3 mm. b) Positioning devices reducing intrafraction bony displacements can further reduce overall intrafraction motion. c) Intrafraction prostate motion relative to bony structures is &lt; 2 mm and may be further reduced by institutional protocols and reduction of IMRT duration

    Breast MRI: guidelines from the European Society of Breast Imaging

    Get PDF
    The aim of breast MRI is to obtain a reliable evaluation of any lesion within the breast. It is currently always used as an adjunct to the standard diagnostic procedures of the breast, i.e., clinical examination, mammography and ultrasound. Whereas the sensitivity of breast MRI is usually very high, specificity—as in all breast imaging modalities—depends on many factors such as reader expertise, use of adequate techniques and composition of the patient cohorts. Since breast MRI will always yield MR-only visible questionable lesions that require an MR-guided intervention for clarification, MRI should only be offered by institutions that can also offer a MRI-guided breast biopsy or that are in close contact with a site that can perform this type of biopsy for them. Radiologists involved in breast imaging should ensure that they have a thorough knowledge of the MRI techniques that are necessary for breast imaging, that they know how to evaluate a breast MRI using the ACR BI-RADS MRI lexicon, and most important, when to perform breast MRI. This manuscript provides guidelines on the current best practice for the use of breast MRI, and the methods to be used, from the European Society of Breast Imaging (EUSOBI)
    corecore