407 research outputs found

    A connection between accretion state and Fe K absorption\textit{Fe K absorption} in an accreting neutron star: black hole-like soft state winds?

    Full text link
    High resolution X-ray spectra of accreting stellar mass Black Holes reveal the presence of accretion disc winds, traced by high ionisation Fe K lines. These winds appear to have an equatorial geometry and to be observed only during disc dominated states in which the radio jet is absent. Accreting neutron star systems also show equatorial high ionisation absorbers. However, the presence of any correlation with the accretion state has not been previously tested. We have studied EXO 0748-676, a transient neutron star system, for which we can reliably determine the accretion state, in order to investigate the Fe K absorption/accretion state/jet connection. Not one of twenty X-ray spectra obtained in the hard state revealed any significant Fe K absorption line. However, intense Fe XXV{\scriptsize{\rm XXV}} and Fe XXVI{\scriptsize{\rm XXVI}} (as well as a rarely observed Fe XXIII{\scriptsize{\rm XXIII}} line plus S XVI{\scriptsize{\rm XVI}}; a blend of S XVI{\scriptsize{\rm XVI}} and Ar XVII{\scriptsize{\rm XVII}}; Ca XX{\scriptsize{\rm XX}} and Ca XIX{\scriptsize{\rm XIX}}, possibly produced by the same high ionisation material) absorption lines (EWFe XXIII−XXV=31±3EW_{\rm Fe~{XXIII-XXV}}=31\pm3 eV, EWFe XXVI=8±3EW_{\rm Fe~XXVI}=8\pm3 eV) are clearly detected during the only soft state observation. This suggests that the connection between Fe K absorption and states (and anticorrelation between the presence of Fe K absorption and jets) is also valid for EXO 0748-676 and therefore it is not a unique property of black hole systems but a more general characteristic of accreting sources.Comment: Accepted for publication in MNRAS Letter

    Swift J1357.2-0933: the faintest black hole?

    Get PDF
    Swift J1357.2-0933 is the first confirmed very faint black hole X-ray transient and has a short estimated orbital period of 2.8 hr. We observed Swift J1357.2-0933 for ~50 ks with XMM-Newton in 2013 July during its quiescent state. The source is clearly detected at a 0.5-10 keV unabsorbed flux of ~3x10^-15 erg cm-2 s-1. If the source is located at a distance of 1.5 kpc (as suggested in the literature), this would imply a luminosity of ~8x10^29 erg s-1, making it the faintest detected quiescent black hole LMXB. This would also imply that there is no indication of a reversal in the quiescence X-ray luminosity versus orbital period diagram down to 2.8 hr, as has been predicted theoretically and recently supported by the detection of the 2.4 hr orbital period black hole MAXI J1659-152 at a 0.5-10 keV X-ray luminosity of ~ 1.2 x 10^31 erg s-1. However, there is considerable uncertainty in the distance of Swift J1357.2-0933 and it may be as distant as 6 kpc. In this case, its quiescent luminosity would be Lx ~ 1.3 x 10^31 erg s-1, i.e., similar to MAXI J1659-152 and hence it would support the existence of such a bifurcation period. We also detected the source in optical at r' ~22.3 mag with the Liverpool telescope, simultaneously to our X-ray observation. The X-ray/optical luminosity ratio of Swift J1357.2-0933 agrees with the expected value for a black hole at this range of quiescent X-ray luminosities.Comment: 5 pages, 3 figures, Accepted for publication in MNRA

    The truncated and evolving inner accretion disc of the black hole GX 339-4

    Get PDF
    The nature of accretion onto stellar mass black holes in the low/hard state remains unresolved, with some evidence suggesting that the inner accretion disc is truncated and replaced by a hot flow. However, the detection of relativistic broadened Fe emission lines, even at relatively low luminosities, seems to require an accretion disc extending fully to its innermost stable circular orbit. Modelling such features is however highly susceptible to degeneracies, which could easily bias any interpretation. We present the first systematic study of the Fe line region to track how the inner accretion disc evolves in the low/hard state of the black hole GX 339−-4. Our four observations display increased broadening of the Fe line over two magnitudes in luminosity, which we use to track any variation of the disc inner radius. We find that the disc extends closer to the black hole at higher luminosities, but is consistent with being truncated throughout the entire low/hard state, a result which renders black hole spin estimates inaccurate at these stages of the outburst. Furthermore, we show that the evolution of our spectral inner disc radius estimates corresponds very closely to the trend of the break frequency in Fourier power spectra, supporting the interpretation of a truncated and evolving disc in the hard state.Comment: Accepted for publication in A&A. Some typos corrected from version

    Revealing accretion onto black holes: X-ray reflection throughout three outbursts of GX 339-4

    Full text link
    Understanding the dynamics behind black hole state transitions and the changes they reflect in outbursts has become long-standing problem. The X-ray reflection spectrum describes the interaction between the hard X-ray source (the power-law continuum) and the cool accretion disc it illuminates, and thus permits an indirect view of how the two evolve. We present a systematic analysis of the reflection spectrum throughout three outbursts (500+ observations) of the black hole binary GX 339-4, representing the largest study applying a self-consistent treatment of reflection to date. Particular attention is payed to the coincident evolution of the power-law and reflection, which can be used to determine the accretion geometry. The hard state is found to be distinctly reflection weak, however the ratio of reflection to power-law gradually increases as the source luminosity rises. In contrast the reflection is found dominate the power-law throughout most of the soft state, with increasing supremacy as the source decays. We discuss potential dynamics driving this, favouring inner disc truncation and decreasing coronal height for the hard and soft states respectively. Evolution of the ionisation parameter, power-law slope and high-energy cut-off also agree with this interpretation.Comment: Accepted for publication in MNRA
    • …
    corecore