1,509 research outputs found

    Recrystallization Simulation by Coupling of a Crystal Plasticity FEM with a Cellular Automaton Method

    Get PDF
    The report presents an approach for simulating primary static recrystallization which is based on coupling a viscoplastic crystal plasticity finite element model with a probabilistic kinetic cellular automaton. The crystal plasticity finite element model accounts for crystallographic slip and for the rotation of the crystal lattice during plastic deformation. The model uses space and time as independent variables and the crystal orientation and the accumulated slip as dependent variables. The ambiguity in the selection of the active slip systems is avoided by using a viscoplastic formulation which assumes that the slip rate on a slip system is related to the resolved shear stress through a power−law relation. The equations are cast in an updated Lagrangian framework. The model has been implemented as a user subroutine in the commercial finite element code Abaqus. The cellular automaton uses a switching rule which is formulated as a probabilistic analogue of the linearized symmetric Turnbull kinetic equation for the motion of sharp grain boundaries. The actual decision about a switching event is made using a Monte Carlo step. The automaton uses space and time as independent variables and the crystal orientation and a stored energy measure as dependent variables. The kinetics produced by the switching algorithm are scaled through the mesh size, the grain boundary mobility, and the driving force data. Coupling of the two models is realized by: translating the state variables used in the finite element plasticity model into state variables used in the cellular automaton; mapping the finite element integration point locations on the quadratic cellular automaton mesh; using the resulting cell size, maximum driving force and maximum grain boundary mobility occuring in the region for determining the length scale, time step, and local switching probabilities in the automaton; and identifying an appropriate nucleation criterion. The coupling method is applied to the simulation of texture and microstructure evolution in a heterogeneously deformed high purity aluminum polycrystal during static primary recrystallization considering local grain boundary mobilities and driving forces

    Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C kappa carbides

    Full text link
    Carbides play a central role for the strength and ductility in many materials. Simulating the impact of these precipitates on the mechanical performance requires the knowledge about their atomic configuration. In particular, the C content is often observed to substantially deviate from the ideal stoichiometric composition. In the present work, we focus on Fe-Mn-Al-C steels, for which we determined the composition of the nano-sized kappa carbides (Fe,Mn)3AlC by atom probe tomography (APT) in comparison to larger precipitates located in grain boundaries. Combining density functional theory with thermodynamic concepts, we first determine the critical temperatures for the presence of chemical and magentic disorder in these carbides. Secondly, the experimentally observed reduction of the C content is explained as a compromise between the gain in chemical energy during partitioning and the elastic strains emerging in coherent microstructures

    Low-energy monopole strength in exotic Nickel isotopes

    Get PDF
    Low-energy strength is predicted for the isoscalar monopole response of neutron-rich Ni isotopes, in calculations performed using the microscopic Skyrme HF+RPA and relativistic RHB+RQRPA models. Both models, although based on different energy density functionals, predict the occurrence of pronounced monopole states in the energy region between 10 MeV and 15 MeV, well separated from the isoscalar GMR. The analysis of transition densities and corresponding particle-hole configurations shows that these states represent almost pure neutron single hole-particle excitations. Even though their location is not modified with respect to the corresponding unperturbed states, their (Q)RPA strength is considerably enhanced by the residual interaction. The theoretical analysis predicts the gradual enhancement of low-energy monopole strength with neutron excess.Comment: 4 pages, 6 figures, submitted to Physical Review

    On computational irreducibility and the predictability of complex physical systems

    Full text link
    Using elementary cellular automata (CA) as an example, we show how to coarse-grain CA in all classes of Wolfram's classification. We find that computationally irreducible (CIR) physical processes can be predictable and even computationally reducible at a coarse-grained level of description. The resulting coarse-grained CA which we construct emulate the large-scale behavior of the original systems without accounting for small-scale details. At least one of the CA that can be coarse-grained is irreducible and known to be a universal Turing machine.Comment: 4 pages, 2 figures, to be published in PR

    Indirect localization of a magnetic domain wall mediated by quasi walls

    No full text
    International audienceThe manipulation of magnetic domain walls in thin films and nanostructures opens new opportunities for fundamental and applied research. But controlling reliably the position of a moving domain wall still remains challenging. So far, most of the studies aimed at understanding the physics of pinning and depinning processes in the magnetic layer in which the wall moves (active layer). In these studies, the role of other magnetic layers in the stack has been often ignored. Here, we report an indirect localization process of 180° domain walls that occurs in magnetic tunnel junctions, commonly used in spintronics. Combining Scanning Transmission X-Ray Microscopy and micromagnetic simulations, magnetic configurations in both layers are resolved. When nucleating a 180° domain wall in the active layer, a quasi wall is created in the reference layer, atop the wall. The wall and its quasi wall must then be moved or positioned together, as a unique object. As a mutual effect, a localized change of the magnetic properties in the reference layer induces a localized quasi wall in the active layer. The two types of quasi walls are shown to be responsible for an indirect localization process of the 180° domain wall in the active layer

    Ultrafeinkörnige Stähle

    No full text
    Warmumformsimulation mit "WUMSI" Ultrafeinkörnige Stähl
    corecore