8,791 research outputs found

    Preliminary rotor wake measurements with a laser velocimeter

    Get PDF
    A laser velocimeter (LV) was used to determine rotor wake characteristics. The effect of various fuselage widths and rotor-fuselage spacings on time averaged and detailed time dependent rotor wake velocity characteristics was defined. Definition of time dependent velocity characteristics was attempted with the LV by associating a rotor azimuth position with each velocity measurement. Results were discouraging in that no apparent time dependent velocity characteristics could be discerned from the LV measurements. Since the LV is a relatively new instrument in the rotor wake measurement field, the cause of this lack of periodicity is as important as the basic research objectives. An attempt was made to identify the problem by simulated acquisition of LV-type data for a predicted rotor wake velocity time history. Power spectral density and autocorrelation function estimation techniques were used to substantiate the conclusion that the primary cause of the lack of time dependent velocity characteristics was the nonstationary flow condition generated by the periodic turbulence level that currently exists in the open throat configuration of the wind tunnel

    A laser velocimeter flow survey above a stalled wing

    Get PDF
    A laser velocimeter operating in the backscatter mode was used to survey the flow about a stalled wing installed in the Langley V/STOL tunnel. Mean velocities and magnitudes of velocity fluctuations were calculated from measurements of two orthogonal components of velocity. Free shear mixing layers above and below a large separated flow region were defined. Velocity power spectra were calculated at two points in the flow field. The flow-field survey was carried out about a rectangular aspect-ratio-8 wing with an airfoil section. The wing angle of attack was 19.4 deg, the Mach number was 0.148, and the nominal Reynolds number was 1 x 1 million

    Incommensurate phonon anomaly and the nature of charge density waves in cuprates

    Get PDF
    While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wavevectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here we investigate the temperature dependence of the low energy phonons in the canonical CDW ordered cuprate La1.875_{1.875}Ba0.125_{0.125}CuO4_{4}. We discover that the phonon softening wavevector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wavevector of 0.238 reciprocal space units (r.l.u.) below the ordering transition temperature up to 0.3~r.l.u. at 300~K. This high-temperature behavior shows that "214"-type cuprates can host CDW correlations at a similar wavevector to previously reported CDW correlations in non-"214"-type cuprates such as YBa2_{2}Cu3_{3}O6+δ_{6+\delta}. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low temperature ordering wavevectors.Comment: Accepted in Phys. Rev. X; 9 pages; 5 figures; 3 pages of supplementary materia

    Correlation of laser velocimeter measurements over a wing with results of two prediction techniques

    Get PDF
    The flow field at the center line of an unswept wing with an aspect ratio of eight was determined using a two dimensional viscous flow prediction technique for the flow field calculation, and a three dimensional potential flow panel method to evaluate the degree of two dimensionality achieved at the wing center line. The analysis was made to provide an acceptable reference for comparison with velocity measurements obtained from a fringe type laser velocimeter optics systems operating in the backscatter mode in the Langley V/STOL tunnel. Good agreement between laser velocimeter measurements and theoretical results indicate that both methods provide a true representation of the velocity field about the wing at angles of attack of 0.6 and 4.75 deg

    Incorporation of Polarization Into the DIRSIG Synthetic Image Generation Model

    Get PDF
    The Digital Imaging and Remote Sensing Synthetic Image Generation (DIRSIG) model uses a quantitative first principles approach to generate synthetic hyperspectral imagery. This paper presents the methods used to add modeling of polarization phenomenology. The radiative transfer equations were modified to use Stokes vectors for the radiance values and Mueller matrices for the energy-matter interactions. The use of Stokes vectors enables a full polarimetric characterization of the illumination and sensor reaching radiances. The bi-directional reflectance distribution function (BRDF) module was rewritten and modularized to accommodate a variety of polarized and unpolarized BRDF models. Two new BRDF models based on Torrance- Sparrow and Beard-Maxwell were added to provide polarized BRDF estimations. The sensor polarization characteristics are modeled using Mueller matrix transformations on a per pixel basis. All polarized radiative transfer calculations are performed spectrally to preserve the hyperspectral capabilities of DIRSIG. Integration over sensor bandpasses is handled by the sensor module

    Fragility and hysteretic creep in frictional granular jamming

    Full text link
    The granular jamming transition is experimentally investigated in a two-dimensional system of frictional, bi-dispersed disks subject to quasi-static, uniaxial compression at zero granular temperature. Currently accepted results show the jamming transition occurs at a critical packing fraction ϕc\phi_c. In contrast, we observe the first compression cycle exhibits {\it fragility} - metastable configuration with simultaneous jammed and un-jammed clusters - over a small interval in packing fraction (ϕ1<ϕ<ϕ2\phi_1 < \phi < \phi_2). The fragile state separates the two conditions that define ϕc\phi_c with an exponential rise in pressure starting at ϕ1\phi_1 and an exponential fall in disk displacements ending at ϕ2\phi_2. The results are explained through a percolation mechanism of stressed contacts where cluster growth exhibits strong spatial correlation with disk displacements. Measurements with several disk materials of varying elastic moduli EE and friction coefficients μ\mu, show friction directly controls the start of the fragile state, but indirectly controls the exponential slope. Additionally, we experimentally confirm recent predictions relating the dependence of ϕc\phi_c on μ\mu. Under repetitive loading (compression), the system exhibits hysteresis in pressure, and the onset ϕc\phi_c increases slowly with repetition number. This friction induced hysteretic creep is interpreted as the granular pack's evolution from a metastable to an eventual structurally stable configuration. It is shown to depend upon the quasi-static step size Δϕ\Delta \phi which provides the only perturbative mechanism in the experimental protocol, and the friction coefficient μ\mu which acts to stabilize the pack.Comment: 12 pages, 10 figure
    • …
    corecore