3,307 research outputs found

    Chiral Corrections to Lattice Calculations of Charge Radii

    Full text link
    Logarithmic divergences in pion and proton charge radii associated with chiral loops are investigated to assess systematic uncertainties in current lattice determinations of charge radii. The chiral corrections offer a possible solution to the long standing problem of why present lattice calculations yield proton and pion radii which are similar in size.Comment: PostScript file only. Ten pages. Figures included. U. of MD Preprint #92-19

    The Extended Chiral Quark Model confronts QCD

    Get PDF
    We discuss the truncation of low energy effective action of QCD below the chiral symmetry breaking (CSB) scale, including all operators of dimensionality less or equal to 6 which can be built with quark and chiral fields. We perform its bosonization in the scalar, pseudoscalar, vector and axial-vector channels in the large-N_c and leading-log approximation. Constraints on the coefficients of the effective lagrangian are derived from the requirement of Chiral Symmetry Restoration (CSR) at energies above the CSB scale in the scalar-pseudoscalar and vector-axial-vector channels, from matching to QCD at intermediate scales, and by fitting some hadronic observables. In this truncation two types of pseudoscalar states (massless pions and massive Pi'-mesons), as well as a scalar, vector and axial-vector one arise as a consequence of dynamical chiral symmetry breaking. Their masses and coupling constants as well as a number of chiral structural constants are derived. A reasonable fit of all parameters supports a relatively heavy scalar meson (quarkonium) with the mass \sim 1 GeV and a small value of axial pion-quark coupling constant g_A \simeq 0.55.Comment: Talk at QCD99, Montpellier, July 1999, 7 pages, Late

    Isospin Violation in Chiral Perturbation Theory and the Decays \eta \ra \pi \ell \nu and \tau \ra \eta \pi \nu

    Full text link
    I discuss isospin breaking effects within the standard model. Chiral perturbation theory presents the appropriate theoretical framework for such an investigation in the low--energy range. Recent results on the electromagnetic contributions to the masses of the pseudoscalar mesons and the Kℓ3K_{\ell 3} amplitudes are reported. Using the one--loop formulae for the ηℓ3\eta_{\ell 3} form factors, rather precise predictions for the decay rates of η→πℓν\eta \rightarrow \pi \ell \nu can be obtained. Finally, I present an estimate of the \tau \ra \eta \pi \nu branching ratio derived from the dominant meson resonance contributions to this decay.Comment: 10 pages, latex, one figure available upon reques

    Physical Nucleon Properties from Lattice QCD

    Get PDF
    We demonstrate that the extremely accurate lattice QCD data for the mass of the nucleon recently obtained by CP-PACS, combined with modern chiral extrapolation techniques, leads to a value for the mass of the physical nucleon which has a systematic error of less than one percent.Comment: 4 pages, 2 figure

    Corrections to Sirlin's Theorem in O(p6)O(p^6) Chiral Perturbation Theory

    Get PDF
    We present the results of the first two-loop calculation of a form factor in full SU(3)×SU(3)SU(3) \times SU(3) Chiral Perturbation Theory. We choose a specific linear combination of π+,K+,K0\pi^+, K^+, K^0 and KπK\pi form factors (the one appearing in Sirlin's theorem) which does not get contributions from order p6p^6 operators with unknown constants. For the charge radii, the correction to the previous one-loop result turns out to be significant, but still there is no agreement with the present data due to large experimental uncertainties in the kaon charge radii.Comment: 6 pages, Latex, 2 LaTeX figure

    Parity-Violating Electron Scattering and Neucleon Structure

    Get PDF
    The measurement of parity violation in the helicity dependence of electron-nucleon scattering provides unique information about the basic quark structure of the nucleons. In this review, the general formalism of parity-violating electron scattering is presented, with emphasis on elastic electron-nucleon scattering. The physics issues addressed by such experiments is discussed, and the major goals of the presently envisioned experimental program are identified. %General aspects of the experimental technique are reviewed and A summary of results from a recent series of experiments is presented and the future prospects of this program are also discussed.Comment: 45 pages, 9 figure

    Contributions of order O(mquark2){\cal O}(m_{\rm quark}^2) to Kâ„“3K_{\ell 3} form factors and unitarity of the CKM matrix

    Full text link
    The form factors for the Kℓ3K_{\ell 3} semileptonic decay are computed to order O(p4)O(p^4) in generalized chiral perturbation theory. The main difference with the standard O(p4)O(p^4) expressions consists in contributions quadratic in quark masses, which are described by a single divergence-free low-energy constant, A3A_3. A new simultaneous analysis is presented for the CKM matrix element VusV_{us}, the ratio FK/FπF_K/F_{\pi}, Kℓ3K_{\ell 3} decay rates and the scalar form factor slope λ0\lambda_0. This framework easily accommodates the precise value for VudV_{ud} deduced from superallowed nuclear β\beta-decays

    The Decuplet Revisited in χ\chiPT

    Full text link
    The paper deals with two issues. First, we explore the quantitiative importance of higher multiplets for properties of the Δ\Delta decuplet in chiral perturbation theory. In particular, it is found that the lowest order one--loop contributions from the Roper octet to the decuplet masses and magnetic moments are substantial. The relevance of these results to the chiral expansion in general is discussed. The exact values of the magnetic moments depend upon delicate cancellations involving ill--determined coupling constants. Second, we present new relations between the magnetic moments of the Δ\Delta decuplet that are independent of all couplings. They are exact at the order of the chiral expansion used in this paper.Comment: 7 pages of double column revtex, no figure

    Sigma-term physics in the perturbative chiral quark model

    Full text link
    We apply the perturbative chiral quark model (PCQM) at one loop to analyse meson-baryon sigma-terms. Analytic expressions for these quantities are obtained in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, axial nucleon coupling, strong pion-nucleon form factor) and of only one model parameter (radius of the nucleonic three-quark core). Our result for the piN sigma term of about 45 MeV is in good agreement with the value deduced by Gasser, Leutwyler and Sainio using dispersion-relation techniques and exploiting the chiral symmetry constraints.Comment: 19 pages, LaTeX-file, 2 Figure
    • …
    corecore