1,049 research outputs found

    Quasar optical variability: searching for interband time delays

    Full text link
    Aims. The main purpose of this paper is to study time delays between the light variations in different wavebands for a sample of quasars. Measuring a reliable time delay for a large number of quasars may help constraint the models of their central engines. The standard accretion disk irradiation model predicts a delay of the longer wavelengths behind the shorter ones, a delay that depends on the fundamental quasar parameters. Since the black hole masses and the accretion rates are approximately known for the sample we use, one can compare the observed time delays with the expected ones. Methods. We applied the interpolation cross-correlation function (ICCF) method to the Giveon et al. sample of 42 quasars, monitored in two (B and R) colors, to find the time lags represented by the ICCF peaks. Different tests were performed to assess the influence of photometric errors, sampling, etc., on the final result. Results. We found that most of the objects show a delay in the red light curve behind the blue one (a positive lag), which on average for the sample is about +4 days (+3 for the median), although the scatter is significant. These results are broadly consistent with the reprocessing model, especially for the well-sampled objects. The normalized time-lag deviations do not seem to correlate significantly with other quasar properties, including optical, radio, or X-ray measurables. On the other hand, many objects show a clear negative lag, which, if real, may have important consequences for the variability models.Comment: 5 pages, 4 figures, accepted in A&

    Assessing statistical significance of periodogram peaks

    Full text link
    The least-squares (or Lomb-Scargle) periodogram is a powerful tool which is used routinely in many branches of astronomy to search for periodicities in observational data. The problem of assessing statistical significance of candidate periodicities for different periodograms is considered. Based on results in extreme value theory, improved analytic estimations of false alarm probabilities are given. They include an upper limit to the false alarm probability (or a lower limit to the significance). These estimations are tested numerically in order to establish regions of their practical applicability.Comment: 7 pages, 6 figures, 1 table; To be published in MNRA

    The Lick Planet Search: Detectability and Mass Thresholds

    Get PDF
    We analyse 11 years of precise radial velocities for 76 solar type stars from the Lick survey. Eight stars in this sample have previously reported planetary-mass companions, all with mass (m sin i) less than 8 Jupiter masses (MJ). For the stars without a detected companion, we place upper limits on possible companion mass. For most stars, we can exclude companions with m sin i > 0.7 MJ (a/AU)^1/2 for orbital radii a < 5 AU. We use our results to interpret the observed masses and orbital radii of planetary-mass companions. For example, we show that the finite duration of the observations makes detection of Jupiter mass companions more and more difficult for orbital radii beyond 3 AU. Thus it is possible that the majority of solar type stars harbor Jupiter-mass companions much like our own, and if so these companions should be detectable in a few years. To search for periodicities, we adopt a "floating-mean" periodogram, which improves on the traditional Lomb-Scargle periodogram by accounting for statistical fluctuations in the mean of a sampled sinusoid. We discuss in detail the normalization of the periodogram, an issue which has been of some debate in the literature.Comment: To appear in the Astrophysical Journal (50 pages, LaTeX, including 11 figures

    On the orbital period of the cataclysmic variable RZ Leonis

    Get PDF
    In this research note we present a time-resolved study of the Balmer emission lines of RZ Leo. From the analysis of the radial velocities we find an orbital period of 0.07651(26) d. This is in excellent agreement with the photometrically determined periods in quiescence and during the early stages of superoutburst. A comparison of the recently determined superhump period gives an excess of ~0.03, which is a typical value for an SU UMa star of this period.Comment: 3 pages, 6 figures, A&A, accepte

    The existence of warm and optically thick dissipative coronae above accretion disks

    Full text link
    In the past years, several observations of AGN and X-ray binaries have suggested the existence of a warm T around 0.5-1 keV and optically thick, \tau ~ 10-20, corona covering the inner parts of the accretion disk. These properties are directly derived from spectral fitting in UV to soft-X-rays using Comptonization models. However, whether such a medium can be both in radiative and hydrostatic equilibrium with an accretion disk is still uncertain. We investigate the properties of such warm, optically thick coronae and put constraints on their existence. We solve the radiative transfer equation for grey atmosphere analytically in a pure scattering medium, including local dissipation as an additional heating term in the warm corona. The temperature profile of the warm corona is calculated assuming it is cooled by Compton scattering, with the underlying dissipative disk providing photons to the corona. Our analytic calculations show that a dissipative thick, (\tau_{cor} ~ 10-12) corona on the top of a standard accretion disk can reach temperatures of the order of 0.5-1 keV in its upper layers provided that the disk is passive. But, in absence of strong magnetic fields, the requirement of a Compton cooled corona in hydrostatic equilibrium in the vertical direction sets an upper limit on the Thomson optical depth \tau_{cor} < 5 . We show this value cannot be exceeded independently of the accretion disk parameters. However, magnetic pressure can extend this result to larger optical depths. Namely, a dissipative corona might have an optical depth up to ~ 20 when the magnetic pressure is 100 times higher that the gas pressure. The observation of warm coronae with Thomson depth larger than ~ 5 puts tights constraints on the physics of the accretion disk/corona systems and requires either strong magnetic fields or vertical outflows to stabilize the system.Comment: 9 pages 6 figure, submitted to A&A, comments are welcom

    X-ray Variability of AGN and the Flare Model

    Full text link
    Short-term variability of X-ray continuum spectra has been reported for several Active Galactic Nuclei. Significant X-ray flux variations are observed within time scales down to 10^3-10^5 seconds. We discuss short variability time scales in the frame of the X-ray flare model, which assumes the release of a large hard X-ray flux above a small portion of the accretion disk. The resulting observed X-ray spectrum is composed of the primary radiation and of a reprocessed Compton reflection component that we model with numerical radiative transfer simulations. The incident hard X-rays of the flare will heat up the atmosphere of the accretion disk and hence induce thermal expansion. Eventually, the flare source will be surrounded by an optically thick medium, which should modify the observed spectra.Comment: 4 pages, 3 figures, accepted proceedings for a talk at the conference "AGN variability from the X-rays to the radio", June 2004, Crimean Observator
    corecore