310 research outputs found

    Ethnicity and work-related stress in Eastern European care workers for the elderly: an application of a proposed multi-dimensional model

    Get PDF
    The present study aims to test the application of a multi-dimensional model of stress that takes as a framework of reference the DRIVE (Demands, Resources, and Individual Effects) model and previous studies on occupational health and cultural aspects in a sample of Eastern European eldercare workers. This model integrated ethnicity and work-related stress dimensions in a transactional perspective combining individual differences, ethnicity aspects, work characteristics in the prediction of psychophysical health giving closer attention to specificassociations between cultural dimensions such as cultural identity, acculturation strategies and health outcomes. Therefore the study hypothesized significant profiles of associations between individual differences, work characteristics, ethnicity dimensions, perceived job satisfaction/stress and health outcomes among these workers. A questionnaire measuring the following dimensions was submitted to 250 Eastern European eldercare workers in Southern Italy: coping strategies, personality behaviours, acculturation strategies, perceived work demands, resources/rewards, perceived job stress/satisfaction, psychological disorders and general health. Around one third (38.6%) lived in Italy from more than 5 years, all were women (Age Mean=43.18; SD=4.25) and most of them were married (94.8 %), with a high level of education (94.4 %), worked full-time (93.2 %) and had fixed contracts (97.2 %)Data were analysed using LR logistic regression to evaluate the effects of all the dimensions reported on the risk of suffering health problems. Results showed that work demands, type A and negative affectivity behavioural patterns significantlyassociated with high levels of anxious-depressive disorders, relational disorders and general health. Moreover positive coping strategies, specificacculturation strategies and perceived job satisfaction significantlyassociated with low levels of psychophysical disorders. Findings supported different aspects of the proposed stress model and will be helpful in definingpsychological interventions to support this particular type of migrant workers

    Biochemical Signatures of Doppel Protein in Human Astrocytomas to Support Prediction in Tumor Malignancy

    Get PDF
    Doppel (Dpl) is a membrane-bound glycoprotein mainly expressed in the testis of adult healthy people. It is generally absent in the central nervous system, but its coding gene sequence is ectopically expressed in astrocytoma specimens and in derived cell lines. In this paper, we investigated the expression and the biochemical features of Dpl in a panel of 49 astrocytoma specimens of different WHO malignancy grades. As a result, Dpl was expressed in the majority of the investigated specimens (86%), also including low grade samples. Importantly, Dpl exhibited different cellular localizations and altered glycan moieties composition, depending on the tumor grade. Most low-grade astrocytomas (83%) showed a membrane-bound Dpl, like human healthy testis tissue, whereas the majority of high-grade astrocytomas (75%) displayed a cytosolic Dpl. Deglycosylation studies with N-glycosidase F and/or neuraminidase highlighted defective glycan moieties and an unexpected loss of sialic acid. To find associations between glial tumor progression and Dpl biochemical features, predictive bioinformatics approaches were produced. In particular, Decision tree and Nomogram analysis showed well-defined Dpl-based criteria that separately clustered low-and high-grade astrocytomas. Taken together, these findings show that in astrocytomas, Dpl undergoes different molecular processes that might constitute additional helpful tools to characterize the glial tumor progression

    Solid State 1 H Spin - lattice Relaxation and Isolated - Molecule and Cluster Electronic Structure Calculations in Organic Molecular Solids: The Relationship Between Structure and Methyl Group and t - Butyl Group Rotation

    Get PDF
    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state 1H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the 1H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group’s constituent methyl groups. The four compounds are 2,7-di-t- butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups

    Solid State 1 H Spin - lattice Relaxation and Isolated - Molecule and Cluster Electronic Structure Calculations in Organic Molecular Solids: The Relationship Between Structure and Methyl Group and t - Butyl Group Rotation

    Get PDF
    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state 1H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the 1H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group’s constituent methyl groups. The four compounds are 2,7-di-t- butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups

    Prodromal non-motor symptoms of Parkinson’s disease

    Get PDF
    The motor symptoms of Parkinson’s disease (PD), bradykinesia, muscular rigidity, and tremor depend upon degeneration of the dopaminergic neurons in the substantia nigra pars compacta. Recent neuropathological studies show that the Lewy bodies, the intraneuronal landmark of PD, accumulate in several neuronal cell types in the brain. An ascending gradient of pathological involvement, from the medulla oblongata to neocortical areas has been reported. Thus the original view of PD as a disease characterized by selective damage of the dopaminergic neurons in the mesencephalon should be updated into the concept of a severe multisystemic neurodegenerative disorder. Additionally, the neuropathological alterations outside the substantia nigra are soundly correlated with the non-motor symptoms of PD. As a result of these findings, interest is growing in the identification of prodromal non-motor symptoms of PD. Indeed, data from the literature suggest that autonomic disturbances, olfactory dysfunctions, depression and sleep disorders (in particular REM-sleep behavior disorder) may represent prodromal non-motor symptoms of PD. Several tests are available to detect most of these symptoms. Thus, the identification of prodromal non-motor symptoms may contribute to the precocious diagnosis of PD, and might be useful in the future to test the efficacy of neuroprotective agents

    Plant neighbor identity influences plant biochemistry and physiology related to defense

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, <it>Centaurea maculosa</it>, would modulate their defensive strategy in response to different plant neighbors.</p> <p>Results</p> <p>In the greenhouse, <it>C. maculosa </it>individuals were paired with either conspecific (<it>C. maculosa</it>) or heterospecific (<it>Festuca idahoensis</it>) plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited <it>C. maculosa </it>plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of <it>C. maculosa </it>growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, <it>C. maculosa </it>individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of <it>C. maculosa </it>conspecifics.</p> <p>Conclusions</p> <p>Our results suggest that an individual <it>C. maculosa </it>plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success.</p

    Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation

    Get PDF
    We report a variety of experiments and calculations and their interpretations regarding methyl group (CH3) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C6H8O3(1) + H2O → C6H10O4(2)]. The techniques are solid state 1H nuclear magnetic resonance (NMR) spin-lattice relaxation, single-crystal X-ray diffraction, electronic structure calculations in both isolated molecules and in clusters of molecules that mimic the crystal structure, field emission scanning electron microscopy, differential scanning calorimetry, and high resolution 1H NMR spectroscopy. The solid state 1H spin-lattice relaxation experiments allow us to observe the temperature dependence of the parameters that characterize methyl group rotation in both compounds and in mixtures of the two compounds. In the mixtures, both types of methyl groups (that is, molecules of 1 and 2) can be observed independently and simultaneously at low temperatures because the solid state 1H spin-lattice relaxation is appropriately described by a double exponential. We have followed the conversion 1 → 2 over periods of two years. The solid state 1H spin-lattice relaxation experiments in pure samples of 1 and 2 indicate that there is a distribution of NMR activation energies for methyl group rotation in 1 but not in 2 and we are able to explain this in terms of the particle sizes seen in the field emission scanning electron microscopy images

    Small Polarons in Transition Metal Oxides

    Full text link
    The formation of polarons is a pervasive phenomenon in transition metal oxide compounds, with a strong impact on the physical properties and functionalities of the hosting materials. In its original formulation the polaron problem considers a single charge carrier in a polar crystal interacting with its surrounding lattice. Depending on the spatial extension of the polaron quasiparticle, originating from the coupling between the excess charge and the phonon field, one speaks of small or large polarons. This chapter discusses the modeling of small polarons in real materials, with a particular focus on the archetypal polaron material TiO2. After an introductory part, surveying the fundamental theoretical and experimental aspects of the physics of polarons, the chapter examines how to model small polarons using first principles schemes in order to predict, understand and interpret a variety of polaron properties in bulk phases and surfaces. Following the spirit of this handbook, different types of computational procedures and prescriptions are presented with specific instructions on the setup required to model polaron effects.Comment: 36 pages, 12 figure

    Historical Factors Associated With Past Environments Influence the Biogeography of Thermophilic Endospores in Arctic Marine Sediments

    Get PDF
    Selection by the local, contemporary environment plays a prominent role in shaping the biogeography of microbes. However, the importance of historical factors in microbial biogeography is more debatable. Historical factors include past ecological and evolutionary circumstances that may have influenced present-day microbial diversity, such as dispersal and past environmental conditions. Diverse thermophilic sulfate-reducing Desulfotomaculum are present as dormant endospores in marine sediments worldwide where temperatures are too low to support their growth. Therefore, they are dispersed to here from elsewhere, presumably a hot, anoxic habitat. While dispersal through ocean currents must influence their distribution in cold marine sediments, it is not clear whether even earlier historical factors, related to the source habitat where these organisms were once active, also have an effect. We investigated whether these historical factors may have influenced the diversity and distribution of thermophilic endospores by comparing their diversity in 10 Arctic fjord surface sediments. Although community composition varied spatially, clear biogeographic patterns were only evident at a high level of taxonomic resolution (&gt;97% sequence similarity of the 16S rRNA gene) achieved with oligotyping. In particular, the diversity and distribution of oligotypes differed for the two most prominent OTUs (defined using a standard 97% similarity cutoff). One OTU was dominated by a single ubiquitous oligotype, while the other OTU consisted of ten more spatially localized oligotypes that decreased in compositional similarity with geographic distance. These patterns are consistent with differences in historical factors that occurred when and where the taxa were once active, prior to sporulation. Further, the influence of history on biogeographic patterns was only revealed by analyzing microdiversity within OTUs, suggesting that populations within standard OTU-level groupings do not necessarily share a common ecological and evolutionary history

    IAEA Contribution to Nanosized Targeted Radiopharmaceuticals for Drug Delivery

    Get PDF
    The rapidly growing interest in the application of nanoscience in the future design of radiopharmaceuticals and the development of nanosized radiopharmaceuticals in the late 2000 ' s, resulted in the creation of a Coordinated Research Project (CRP) by the International Atomic Energy Agency (IAEA) in 2014. This CRP entitled 'Nanosized delivery systems for radiopharmaceuticals' involved a team of expert scientist from various member states. This team of scientists worked on a number of cutting-edge areas of nanoscience with a focus on developing well-defined, highly effective and site-specific delivery systems of radiopharmaceuticals. Specifically, focus areas of various teams of scientists comprised of the development of nanoparticles (NPs) based on metals, polymers, and gels, and their conjugation/encapsulation or decoration with various tumor avid ligands such as peptides, folates, and small molecule phytochemicals. The research and development efforts also comprised of developing optimum radiolabeling methods of various nano vectors using diagnostic and therapeutic radionuclides including Tc-99m, Ga-68, Lu-177 and Au-198. Concerted efforts of teams of scientists within this CRP has resulted in the development of various protocols and guidelines on delivery systems of nanoradiopharmaceuticals, training of numerous graduate students/post-doctoral fellows and publications in peer reviewed journals while establishing numerous productive scientific networks in various participating member states. Some of the innovative nanoconstructs were chosen for further preclinical applications-all aimed at ultimate clinical translation for treating human cancer patients. This review article summarizes outcomes of this major international scientific endeavor
    corecore