14 research outputs found

    The neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest

    Get PDF
    The black yeast Exophiala dermatitidis is known as a rare etiologic agent of neurotropic infections in humans, occurring particularly in East and Southeast Asia. In search of its natural habitat, a large sampling was undertaken in temperate as well as in tropical climates. Sampling sites were selected on the basis of the origins of previously isolated strains, and on the basis of physiological properties of the species, which also determined a selective isolation protocol. The species was absent from outdoor environments in the temperate climate, but present at low abundance in comparable habitats in the tropics. Positive outdoor sites particularly included faeces of frugivorous birds and bats, in urban as well as in natural areas. Tropical fruits were found E. dermatitidis positive at low incidence. Of the human-made environments sampled, railway ties contaminated by human faeces and oily debris in the tropics were massively positive, while the known abundance of the fungus in steam baths was confirmed. On the basis of the species' oligotrophy, thermotolerance, acidotolerance, moderate osmotolerance, melanization and capsular yeast cells a natural life cycle in association with frugivorous animals in foci in the tropical rain forest, involving passage of living cells through the intestinal tract was hypothesized. The human-dominated environment may have become contaminated by ingestion of wild berries carrying fungal propagule

    Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues and future prospects

    Get PDF
    Environmental contamination due to heavy metals (HMs) is of serious ecotoxicological concern worldwide because of their increasing use at industries. Due to non-biodegradable and persistent nature, HMs cause serious soil/water pollution and severe health hazards in living beings upon exposure. HMs can be genotoxic, carcinogenic, mutagenic, and teratogenic in nature even at low concentration. They may also act as endocrine disruptors and induce developmental as well as neurological disorders and thus, their removal from our natural environment is crucial for the rehabilitation of contaminated sites. To cope with HM pollution, phytoremediation has emerged as a low-cost and eco-sustainable solution to conventional physico-chemical cleanup methods that require high capital investment and labor alter soil properties and disturb soil microflora. Phytoremediation is a green technology wherein plants and associated microbes are used to remediate HM-contaminated sites to safeguard the environment and protect public health. Hence, in view of the above, the present paper aims to examine the feasibility of phytoremediation as a sustainable remediation technology for the management of metals-contaminated sites. Therefore, this paper provides an in-depth review on both the conventional and novel phytoremediation approaches, evaluate their efficacy to remove toxic metals from our natural environment, explore current scientific progresses, field experiences and sustainability issues and revise world over trends in phytoremediation research for its wider recognition and public acceptance as a sustainable remediation technology for the management of contaminated sites in 21st century

    Elucidation of distribution patterns and possible infection routes of the neurotropic black yeast Exophiala dermatitidis using AFLP

    No full text
    Distribution of populations of the opportunistic black yeast Exophiala dermatitidis was studied using AFLP. This fungus has been hypothesized to have a natural habitat in association with frugivorous birds and bats in the tropical rain forest, and to emerge in the human-dominated environment, where it occasionally causes human pulmonary or fatal disseminated and neurotropic disease. The hypothesis of its natural niche was investigated by comparing a set of 178 strains from natural and human-dominated environments in Thailand with a worldwide selection of 107 strains from the reference collection of the CBS Fungal Biodiversity Centre, comprising 75.7 % clinical isolates. Many isolates had unique AFLP patterns and were too remote for confident comparison. Eight populations containing multiple isolates could be distinguished, enabling determination of geographic distributions of these populations. Some of the populations were confined to Thailand, while others occurred worldwide. The local populations from Thailand contained strains from natural and urban environments, suggesting an environmental jump of the fungus. Strains from human brain belonged to widely dispersed populations. In some cases cerebral isolates were identical to isolates from the human intestinal tract. The possibility of cerebral infection through intestinal translocation was thus not excluded
    corecore