787 research outputs found
Budd-Chiari syndrome recurring in a transplanted liver
A patient with Budd-Chiari syndrome who underwent orthotopic liver transplantation and developed recurrent disease is described. The immediate postoperative period was complicated by multiple thrombotic episodes, followed by a period of apparent remission associated with the initiation of coumadin and persantine therapy. After discontinuation of such antithrombotic therapy in order to biopsy the liver, the patient experienced another series of clinically overt vascular thromboses and ultimately died of sepsis 15 mo posttransplantation after a prolonged and complicated terminal hospital course. At autopsy, recurrent Budd-Chiari syndrome as well as thromboses in numerous other organs was demonstrated. © 1983
Liver and kidney transplantation in children receiving cyclosporin A and steroids
The new immunosuppressive agent, cyclosporin A, was used with low doses of steroids to treat eight patients undergoing hepatic transplantation and three patients undergoing cadaveric renal transplantation. Seven of the eight liver recipients are well, including one who was given two livers. The three kidney recipients, who had developed cytotoxic antibodies after previously rejecting grafts with conventional immunosuppressive therapy, have had good results despite conditions which usually preclude attempts at transplantation. The ability to control rejection effectively and safely without chronic high-dose steroid therapy may make the described therapeutic regimen valuable for pediatric recipients of whole organs. © 1982 The C. V. Mosby Company
Arteriography during ex vivo renal perfusion A complication
A case of bilateral renal-cell carcinoma unsuccessfully treated with bench surgery is reported. The reason for failure was apparently the toxicity of the contrast media used during the ex vivo arteriographic studies. © 1973
Kidney after nonrenal transplantation-the impact of alemtuzumab induction
BACKGROUND.: Calcineurin inhibitor nephrotoxicity in nonrenal allograft recipients can lead to end-stage renal disease and the need for kidney transplantation. We sought to evaluate the role of alemtuzumab induction in this population. PATIENTS AND METHODS.: We evaluated 144 patients undergoing kidney transplantation after nonrenal transplantation between May 18, 1998, and October 8, 2007. Seventy-two patients transplanted between January 15, 2003, and October 8, 2007, received alemtuzumab induction and continued their pretransplant immunosuppression. Seventy-two patients transplanted between May 18, 1998, and July 21, 2007, did not receive alemtuzumab induction, but received additional steroids and maintenance immunosuppression. Donor and recipient demographics were comparable. RESULTS.: Overall, 1-and 3-year patient survival and renal function were comparable between the two groups. One-and 3-year graft survival was 93.0% and 75.3% in the alemtuzumab group and 83.3% and 68.7% in the no alemtuzumab group, respectively (P=0.051). The incidence of acute rejection was lower in the alemtuzumab group, 15.3%, than in the no alemtuzumab group, 41.7% (P=0.0001). The incidence of delayed graft function was lower in the alemtuzumab group, 9.7%, than in the no alemtuzumab group, 25.0% (P=0.003). The incidence of viral complications was comparable. CONCLUSION.: Alemtuzumab induction with simple resumption of baseline immunosuppression in patients undergoing kidney transplantation after nonrenal transplantation represents a reasonable immunosuppressive strategy. Copyright © 2009 by Lippincott Williams & Wilkins
Future aspects of renal transplantation
New and exciting advances in renal transplantation are continuously being made, and the horizons for organ transplantation are bright and open. This article reviews only a few of the newer advances that will allow renal transplantation to become even more widespread and successful. The important and exciting implications for extrarenal organ transplantation are immediately evident. © 1988 Springer-Verlag
Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: Release by the apocrine secretion mode?
Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididynnal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immuno-electron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens. Copyright (c) 2006 S. Karger AG, Basel
Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>
Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling
- …