3,291 research outputs found
Steady-State Two Atom Entanglement in a Pumped Cavity
In this paper we explore the possibility of a steady-state entanglement of
two two-level atoms inside a pumped cavity by taking into account cavity
leakage and the spontaneous emission of photons by the atoms. We describe the
system in the dressed state picture in which the coherence is built into the
dressed states while transitions between the dressed states are incoherent. Our
model assumes the vacuum Rabi splitting of the dressed states to be much larger
than any of the decay parameters of the system which allows atom-field
coherence to build up before any decay process takes over. We show that, under
our model, a pumping field cannot entangle two closed two-level atoms inside
the cavity in the steady-state, but a steady-state entanglement can be achieved
with two open two-level atoms.Comment: 19 pages, 5 figure
Entanglement of internal and external angular momenta of a single atom
We consider the exchange of spin and orbital angular momenta between a
circularly polarized Laguerre-Gaussian beam of light and a single atom trapped
in a two-dimensional harmonic potential. The radiation field is treated
classically but the atomic center-of-mass motion is quantized. The spin and
orbital angular momenta of the field are individually conserved upon
absorption, and this results in the entanglement of the internal and external
degrees of freedom of the atom. We suggest applications of this entanglement in
quantum information processing.Comment: 4 pages, 2 figure
Effect of the chemical state of pyrolysis gases on heat-shield mass
Effect of chemical properties of pyrolysis gases on heat shield mass required for lifting reentry vehicle in typical reentry trajector
Remotely controlled mirror of variable geometry for small angle x-ray diffraction with synchrotron radiation
A total-reflecting mirror of 120-cm length was designed and built to focus synchrotron radiation emanating from the electron-positron storage ring at the Stanford Linear Accelerator Center (SPEAR). The reflecting surface is of
unpolished float glass. The bending and tilt mechanism allows very fine control of the curvature and selectability of the critical angle for wavelengths ranging from 0.5 to 3.0 Å. Elliptical curvature is used to minimize aberrations. The mirror is placed asymmetrically onto the ellipse so as to achieve a tenfold demagnification of the source. The bending mechanism reduces nonelastic
deformation (flow) and minimizes strains and stresses in the glass despite its length. Special design features assure stability of the focused image. The mirror
reduces the intensity of shorter wavelength harmonics by a factor of approximately 100
Recommended from our members
Correlated analytical studies of organic material from the Tagish Lake carbonaceous chondrite
We report on correlated studies of organic material using SIMS, FIB-SEM, and TEM
Deterministic Secure Communications using Two-Mode Squeezed States
We propose a scheme for quantum cryptography that uses the squeezing phase of
a two-mode squeezed state to transmit information securely between two parties.
The basic principle behind this scheme is the fact that each mode of the
squeezed field by itself does not contain any information regarding the
squeezing phase. The squeezing phase can only be obtained through a joint
measurement of the two modes. This, combined with the fact that it is possible
to perform remote squeezing measurements, makes it possible to implement a
secure quantum communication scheme in which a deterministic signal can be
transmitted directly between two parties while the encryption is done
automatically by the quantum correlations present in the two-mode squeezed
state.Comment: 10 pages, 4 figure
Robust Multi-Partite Multi-Level Quantum Protocols
We present a tripartite three-level state that allows a secret sharing
protocol among the three parties, or a quantum key distribution protocol
between any two parties. The state used in this scheme contains entanglement
even after one system is traced out. We show how to utilize this residual
entanglement for quantum key distribution purposes, and propose a realization
of the scheme using entanglement of orbital angular momentum states of photons.Comment: 9 pages, 2 figure
Young\u27s Double-Slit Interferometry within an Atom
An experiment is described which is an analog of Young\u27s double-slit interferometer using an atomic electron instead of light. Two phase-coherent laser pulses are used to excite a single electron into a state of the form of a pair of Rydberg wave packets that are initially on opposite sides of the orbit. The two wave packets propagate and spread until they completely overlap, then a third phase-coherent laser pulse probes the resulting fringe pattern. The relative phase of the two wave packets is varied so that the interference produces a single localized electron wave packet on one side of the orbit or the other
- …