3,587 research outputs found

    Pupil mobility, attainment and progress in secondary school

    Get PDF
    This paper is the second of two articles arising from a study of the association between pupil mobility and attainment in national tests and examinations in an inner London borough. The first article (Strand & Demie, 2006) examined the association of pupil mobility with attainment and progress during primary school. It concluded that pupil mobility had little impact on performance in national tests at age 11, once pupils’ prior attainment at age 7 and other pupil background factors such as age, sex, special educational needs, stage of fluency in English and socio-economic disadvantage were taken into account. The present article reports the results for secondary schools (age 11-16). The results indicate that pupil mobility continues to have a significant negative association with performance in public examinations at age 16, even after including statistical controls for prior attainment at age 11 and other pupil background factors. Possible reasons for the contrasting results across school phases are explored. The implications for policy and further research are discussed

    Dual Bethe-Salpeter equation for the multi-orbital lattice susceptibility within dynamical mean-field theory

    Full text link
    Dynamical mean-field theory describes the impact of strong local correlation effects in many-electron systems. While the single-particle spectral function is directly obtained within the formalism, two-particle susceptibilities can also be obtained by solving the Bethe-Salpeter equation. The solution requires handling infinite matrices in Matsubara frequency space. This is commonly treated using a finite frequency cut-off, resulting in slow linear convergence. We show that decomposing the two-particle response in local and non-local contributions enables a reformulation of the Bethe-Salpeter equation inspired by the dual boson formalism. The re-formulation has a drastically improved cubic convergence with respect to the frequency cut-off, facilitating the calculation of susceptibilities in multi-orbital systems considerably. The dual Bethe-Salpeter equation uses the fully reducible vertex which is free from vertex divergences. We benchmark the approach on several systems including the spin susceptibility of strontium ruthenate Sr2_2RuO4_4, a strongly correlated Hund's metal with three active orbitals. We propose the dual Bethe-Salpeter equation as a new standard for calculating two-particle response within dynamical mean-field theory

    Larmor precession in strongly correlated itinerant electron systems

    Full text link
    Many-electron systems undergo a collective Larmor precession in the presence of a magnetic field. In a paramagnetic metal, the resulting spin wave provides insight into the correlation effects generated by the electron-electron interaction. Here, we use dynamical mean-field theory to investigate the collective Larmor precession in the strongly correlated regime, where dynamical correlation effects such as quasiparticle lifetimes and non-quasiparticle states are essential. We study the spin excitation spectrum, which includes a dispersive Larmor mode as well as electron-hole excitations that lead to Stoner damping. We also extract the momentum-resolved damping of slow spin waves. The accurate theoretical description of these phenomena relies on the Ward identity, which guarantees a precise cancellation of self-energy and vertex corrections at long wavelengths. Our findings pave the way towards a better understanding of spin wave damping in correlated materials

    The limits of social class in explaining ethnic gaps in educational attainment

    Get PDF
    This paper reports an analysis of the educational attainment and progress between age 11 and age 14 of over 14,500 students from the nationally representative Longitudinal Study of Young People in England (LSYPE). The mean attainment gap in national tests at age 14 between White British and several ethnic minority groups were large, more than three times the size of the gender gap, but at the same time only about one-third of the size of the social class gap. Socio-economic variables could account for the attainment gaps for Black African, Pakistani and Bangladeshi students, but not for Black Caribbean students. Further controls for parental and student attitudes, expectations and behaviours indicated minority ethnic groups were on average more advantaged on these measures than White British students, but this was not reflected proportionately in their levels of attainment. Black Caribbean students were distinctive as the only group making less progress than White British students between age 11 and 14 and this could not be accounted for by any of the measured contextual variables. Possible explanations for the White British-Black Caribbean gap are considered

    Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury.

    Get PDF
    Although axonal regeneration after CNS injury is limited, partial injury is frequently accompanied by extensive functional recovery. To investigate mechanisms underlying spontaneous recovery after incomplete spinal cord injury, we administered C7 spinal cord hemisections to adult rhesus monkeys and analyzed behavioral, electrophysiological and anatomical adaptations. We found marked spontaneous plasticity of corticospinal projections, with reconstitution of fully 60% of pre-lesion axon density arising from sprouting of spinal cord midline-crossing axons. This extensive anatomical recovery was associated with improvement in coordinated muscle recruitment, hand function and locomotion. These findings identify what may be the most extensive natural recovery of mammalian axonal projections after nervous system injury observed to date, highlighting an important role for primate models in translational disease research

    Pathological relevance of post-translationally modified alpha-synuclein (pSer87, pSer129, nTyr39) in idiopathic Parkinson’s disease and Multiple System Atrophy

    Get PDF
    Aggregated alpha-synuclein (a-synuclein) is the main component of Lewy bodies (LBs), Lewy neurites (LNs), and glial cytoplasmic inclusions (GCIs), which are pathological hallmarks of idiopathic Parkinson’s disease (IPD) and multiple system atrophy (MSA), respectively. Initiating factors that culminate in forming LBs/LNs/GCIs remain elusive. Several species of a-synuclein exist, including phosphorylated and nitrated forms. It is unclear which a-synuclein post-translational modifications (PTMs) appear within aggregates throughout disease pathology. Herein we aimed to establish the predominant a-synuclein PTMs in post-mortem IPD and MSA pathology using immunohistochemistry. We examined the patterns of three a-synuclein PTMs (pS87, pS129, nY39) simultaneously in pathology- affected regions of 15 PD, 5 MSA, 6 neurologically normal controls. All antibodies recognized LBs, LNs, and GCIs, albeit to a variable extent. pS129 a-synuclein antibody was particularly immunopositive for LNs and synaptic dot-like structures followed by nY39 a- synuclein antibody. GCIs, neuronal inclusions, and small threads were positive for nY39 a- synuclein in MSA. Quantification of the LB scores revealed that pS129 a-synuclein was the dominant and earliest a-synuclein PTM followed by nY39 a-synuclein, while lower amounts of pSer87 a-synuclein appeared later in disease progression in PD. These results may have implications for novel biomarker and therapeutic developments

    Microglial burden, activation and dystrophy patterns in frontotemporal lobar degeneration

    Get PDF
    BACKGROUND: Microglial dysfunction is implicated in frontotemporal lobar degeneration (FTLD). Although studies have reported excessive microglial activation or senescence (dystrophy) in Alzheimer's disease (AD), few have explored this in FTLD. We examined regional patterns of microglial burden, activation and dystrophy in sporadic and genetic FTLD, sporadic AD and controls. METHODS: Immunohistochemistry was performed in frontal and temporal grey and white matter from 50 pathologically confirmed FTLD cases (31 sporadic, 19 genetic: 20 FTLD-tau, 26 FTLD-TDP, four FTLD-FUS), five AD cases and five controls, using markers to detect phagocytic (CD68-positive) and antigen-presenting (CR3/43-positive) microglia, and microglia in general (Iba1-positive). Microglial burden and activation (morphology) were assessed quantitatively for each microglial phenotype. Iba1-positive microglia were assessed semi-quantitatively for dystrophy severity and qualitatively for rod-shaped and hypertrophic morphology. Microglia were compared in each region between FTLD, AD and controls, and between different pathological subtypes of FTLD, including its main subtypes (FTLD-tau, FTLD-TDP, FTLD-FUS), and subtypes of FTLD-tau, FTLD-TDP and genetic FTLD. Microglia were also compared between grey and white matter within each lobe for each group. RESULTS: There was a higher burden of phagocytic and antigen-presenting microglia in FTLD and AD cases than controls, but activation was often not increased. Burden was generally higher in white matter than grey matter, but activation was greater in grey matter. However, microglia varied regionally according to FTLD subtype and disease mechanism. Dystrophy was more severe in FTLD and AD than controls, and more severe in white than grey matter, but this also varied regionally and was particularly extensive in FTLD due to progranulin (GRN) mutations. Presence of rod-shaped and hypertrophic microglia also varied by FTLD subtype. CONCLUSIONS: This study demonstrates regionally variable microglial involvement in FTLD and links this to underlying disease mechanisms. This supports investigation of microglial dysfunction in disease models and consideration of anti-senescence therapies in clinical trials

    Sleep Disturbances and Glucose Metabolism in Older Adults: The Cardiovascular Health Study.

    Get PDF
    ObjectiveWe examined the associations of symptoms of sleep-disordered breathing (SDB), which was defined as loud snoring, stopping breathing for a while during sleep, and daytime sleepiness, and insomnia with glucose metabolism and incident type 2 diabetes in older adults.Research design and methodsBetween 1989 and 1993, the Cardiovascular Health Study recruited 5,888 participants ≄65 years of age from four U.S. communities. Participants reported SDB and insomnia symptoms yearly through 1989-1994. In 1989-1990, participants underwent an oral glucose tolerance test, from which insulin secretion and insulin sensitivity were estimated. Fasting glucose levels were measured in 1989-1990 and again in 1992-1993, 1994-1995, 1996-1997, and 1998-1999, and medication use was ascertained yearly. We determined the cross-sectional associations of sleep symptoms with fasting glucose levels, 2-h glucose levels, insulin sensitivity, and insulin secretion using generalized estimated equations and linear regression models. We determined the associations of updated and averaged sleep symptoms with incident diabetes in Cox proportional hazards models. We adjusted for sociodemographics, lifestyle factors, and medical history.ResultsObserved apnea, snoring, and daytime sleepiness were associated with higher fasting glucose levels, higher 2-h glucose levels, lower insulin sensitivity, and higher insulin secretion. The risk of the development of type 2 diabetes was positively associated with observed apnea (hazard ratio [HR] 1.84 [95% CI 1.19-2.86]), snoring (HR 1.27 [95% CI 0.95-1.71]), and daytime sleepiness (HR 1.54 [95% CI 1.13-2.12]). In contrast, we did not find consistent associations between insomnia symptoms and glucose metabolism or incident type 2 diabetes.ConclusionsEasily collected symptoms of SDB are strongly associated with insulin resistance and the incidence of type 2 diabetes in older adults. Monitoring glucose metabolism in such patients may prove useful in identifying candidates for lifestyle or pharmacological therapy. Further studies are needed to determine whether insomnia symptoms affect the risk of diabetes in younger adults

    Time-Dependent and Steady-State Gutzwiller approach for nonequilibrium transport in nanostructures

    Full text link
    We extend the time-dependent Gutzwiller variational approach, recently introduced by Schir\`o and Fabrizio, Phys. Rev. Lett. 105 076401 (2010), to impurity problems. Furthermore, we derive a consistent theory for the steady state, and show its equivalence with the previously introduced nonequilibrium steady-state extension of the Gutzwiller approach. The method is shown to be able to capture dissipation in the leads, so that a steady state is reached after a sufficiently long relaxation time. The time-dependent method is applied to the single orbital Anderson impurity model at half-filling, modeling a quantum dot coupled to two leads. In these first exploratory calculations the Gutzwiller projector is limited to act only on the impurity. The strengths and the limitations of this approximation are assessed via comparison with state of the art continuous time quantum Monte Carlo results. Finally, we discuss how the method can be systematically improved by extending the region of action of the Gutzwiller projector.Comment: 13 pages, 6 figure
    • 

    corecore