40,789 research outputs found
Magnetospheric studies using the UKS data
The magnetic field data from the UKS spacecraft were analyzed to learn more about the solar wind interaction with the Earth's magnetosphere and about the magnetosphere itself. The data was reduced from raw experimenter data records to engineering units. The evolution of the waves in the foreshock, the varying structure of the bow shock along the boundary, simultaneous behavior of the magnetopause in the north and south hemisphere and MHD waves in the magnetosphere and magnetosheath were examined
Isotope separation using metallic vapor lasers
The isotope U235 is separated from a gasified isotope mixture of U235 and U238 by selectively exciting the former from the ground state utilizing resonant absorption of radiation from precisely tuned lasers. The excited isotope is then selectively ionized by electron bombardment. It then is separated from the remaining isotope mixture by electromagnetic separation
Double-discharge copper-vapor laser
Power supply for discharge pulses consists of two capacitors that are made to discharge synchronously with adjustable time intervals. First pulse is switched with hydrogen thyratron, and second by spark gap. Lasing action peaks for appropriate combination of these two parameters
Recommended from our members
Source-specific Fine Particulate Using Spatiotemporal Concentration Fields Developed using Chemical Transport Modelling and Data Assimilation
Inside the Bondi radius of M87
Chandra X-ray observations of the nearby brightest cluster galaxy M87 resolve
the hot gas structure across the Bondi accretion radius of the central
supermassive black hole, a measurement possible in only a handful of systems
but complicated by the bright nucleus and jet emission. By stacking only short
frame-time observations to limit pileup, and after subtracting the nuclear PSF,
we analysed the X-ray gas properties within the Bondi radius at 0.12-0.22 kpc
(1.5-2.8 arcsec), depending on the black hole mass. Within 2 kpc radius, we
detect two significant temperature components, which are consistent with
constant values of 2 keV and 0.9 keV down to 0.15 kpc radius. No evidence was
found for the expected temperature increase within ~0.25 kpc due to the
influence of the SMBH. Within the Bondi radius, the density profile is
consistent with . The lack of a temperature increase inside
the Bondi radius suggests that the hot gas structure is not dictated by the
SMBH's potential and, together with the shallow density profile, shows that the
classical Bondi rate may not reflect the accretion rate onto the SMBH. If this
density profile extends in towards the SMBH, the mass accretion rate onto the
SMBH could be at least two orders of magnitude less than the Bondi rate, which
agrees with Faraday rotation measurements for M87. We discuss the evidence for
outflow from the hot gas and the cold gas disk and for cold feedback, where gas
cooling rapidly from the hot atmosphere could feed the cirumnuclear disk and
fuel the SMBH. At 0.2 kpc radius, the cooler X-ray temperature component
represents ~20% of the total X-ray gas mass and, by losing angular momentum to
the hot gas component, could provide a fuel source of cold clouds within the
Bondi radius.Comment: 14 pages, 8 figures, accepted by MNRA
Outer planet mission guidance and navigation for spinning spacecraft
The orbit determination accuracies, maneuver results, and navigation system specification for spinning Pioneer planetary probe missions are analyzed to aid in determining the feasibility of deploying probes into the atmospheres of the outer planets. Radio-only navigation suffices for a direct Saturn mission and the Jupiter flyby of a Jupiter/Uranus mission. Saturn ephemeris errors (1000 km) plus rigid entry constraints at Uranus result in very high velocity requirements (140 m/sec) on the final legs of the Saturn/Uranus and Jupiter/Uranus missions if only Earth-based tracking is employed. The capabilities of a conceptual V-slit sensor are assessed to supplement radio tracking by star/satellite observations. By processing the optical measurements with a batch filter, entry conditions at Uranus can be controlled to acceptable mission-defined levels (+ or - 3 deg) and the Saturn-Uranus leg velocity requirements can be reduced by a factor of 6 (from 139 to 23 m/sec) if nominal specified accuracies of the sensor can be realized
An excess of damped Lyman alpha galaxies near QSOs
We present a sample of 33 damped Lyman alpha systems (DLAs) discovered in the
Sloan Digital Sky Survey (SDSS) whose absorption redshifts (z_abs) are within
6000 km/s of the QSO's systemic redshift (z_sys). Our sample is based on 731
2.5 < z_sys < 4.5 non-broad-absorption-line (non-BAL) QSOs from Data Release 3
(DR3) of the SDSS. We estimate that our search is ~100 % complete for absorbers
with N(HI) >= 2e20 cm^-2. The derived number density of DLAs per unit redshift,
n(z), within v < 6000 km/s is higher (3.5 sigma significance) by almost a
factor of 2 than that of intervening absorbers observed in the SDSS DR3, i.e.
there is evidence for an overdensity of galaxies near the QSOs. This provides a
physical motivation for excluding DLAs at small velocity separations in surveys
of intervening 'field' DLAs. In addition, we find that the overdensity of
proximate DLAs is independent of the radio-loudness of the QSO, consistent with
the environments of radio-loud and radio-quiet QSOs being similar.Comment: Accepted for publication in MNRAS (13 pages, 6 figures
- …