17,259 research outputs found

    Physical Transport and Chemical Behavior of Dispersed Oil

    Get PDF
    During response operations, scientific information is provided to decision makers, such as the Federal On-Scene Coordinator (FOSC), state and federal trustees, and the public. The decision to use chemical dispersants during a response is made among all these parties, and during the Deepwater Horizon (DWH) oil spill the dispersant discussion included both surface and subsurface application of chemical dispersants. This paper is intended to provide perspective on research needs considered pre- and post-DWH oil spill related to response modeling and data collection needs for decision support of dispersant application and its potential effects. Given time constraints for implementing models and sampling strategies for response, requirements for data and types of questions to be addressed may be significantly different than requirements for research or damage assessment activities. At the time of this writing, just over a year after the successful response operations to cap the well, many studies are still in progress, and data are still being collected and evaluated to assess dispersant effectiveness and possible impacts. More information and research results will become available over the next months to years. Thus these research needs, as summarized for this workshop, should be evaluated again at a later time

    An experimental investigation of vortex breakdown on a delta wing

    Get PDF
    An experimental investigation of vortex breakdown on delta wings at high angles is presented. Thin delta wings having sweep angles of 70, 75, 80 and 85 degrees are being studied. Smoke flow visualization and the laser light sheet technique are being used to obtain cross-sectional views of the leading edge vortices as they break down. At low tunnel speeds (as low as 3 m/s) details of the flow, which are usually imperceptible or blurred at higher speeds, can be clearly seen. A combination of lateral and longitudinal cross-sectional views provides information on the three dimensional nature of the vortex structure before, during and after breakdown. Whereas details of the flow are identified in still photographs, the dynamic characteristics of the breakdown process were recorded using high speed movies. Velocity measurements were obtained using a laser Doppler anemometer with the 70 degree delta wing at 30 degrees angle of attack. The measurements show that when breakdown occurs the core flow transforms from a jet-like flow to a wake-like flow

    YF-12 Lockalloy ventral fin program, volume 1

    Get PDF
    Results are presented of the YF-12 Lockalloy Ventral Fin Program which was carried out by Lockheed Aircraft Corporation - Advanced Development Projects for the joint NASA/USAF YF-12 Project. The primary purpose of the program was to redesign and fabricate the ventral fin of the YF-12 research airplane (to reduce flutter) using Lockalloy, and alloy of beryllium and aluminum, as a major structural material. A secondary purpose, was to make a material characterization study (thermodynamic properties, corrosion; fatigue tests, mechanical properties) of Lockalloy to validate the design of the ventral fin and expand the existing data base on this material. All significant information pertinent to the design and fabrication of the ventral fin is covered. Emphasis throughout is given to Lockalloy fabrication and machining techniques and attendant personnel safety precautions. Costs are also examined. Photographs of tested alloy specimens are shown along with the test equipment used

    Componential coding in the condition monitoring of electrical machines Part 2: application to a conventional machine and a novel machine

    Get PDF
    This paper (Part 2) presents the practical application of componential coding, the principles of which were described in the accompanying Part 1 paper. Four major issues are addressed, including optimization of the neural network, assessment of the anomaly detection results, development of diagnostic approaches (based on the reconstruction error) and also benchmarking of componential coding with other techniques (including waveform measures, Fourier-based signal reconstruction and principal component analysis). This is achieved by applying componential coding to the data monitored from both a conventional induction motor and from a novel transverse flux motor. The results reveal that machine condition monitoring using componential coding is not only capable of detecting and then diagnosing anomalies but it also outperforms other conventional techniques in that it is able to separate very small and localized anomalies

    Broad redshifted line as a signature of outflow

    Full text link
    We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c is the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.Comment: 16 pages, 1 black-white figure and 2 color figures; accepted for publication in the Astrophysical Journa

    The prevalence of medical reasons for non-participation in the Scottish breast and bowel cancer screening programmes

    Get PDF
    Objective: Increasing uptake of cancer screening is a priority for health systems internationally, however, some patients may not attend because they are undergoing active treatment for the cancer of interest or have other medical reasons that mean participation would be inappropriate. This study aims to quantify the proportion of non-participants who have a medical reason for not attending cancer screening.<p></p> Methods: Medical reasons for not participating in breast and bowel screening were defined a priori on the basis of a literature review and expert opinion. The notes of 700 patients at two GP practices in Scotland were reviewed, to ascertain the prevalence of medical reasons amongst non-participants. Simple proportions and confidence intervals were calculated.<p></p> Results: 17.4% of breast and 2.3% of bowel screening non-participants had a medical reason to not participate. The two most common reasons were previous breast cancer follow up (8.86%) and recent mammogram (6.57%).<p></p> Conclusion: These patients may not benefit from screening while also being distressed by receiving an invitation. This issue also makes accurate monitoring and target-setting for improving uptake difficult. Further work is needed to estimate robustly the extent to which medical reasons account for screening non-participation in a larger population.<p></p&gt

    Ensemble density-functional theory for ab-initio molecular dynamics of metals and finite-temperature insulators

    Full text link
    A new method is presented for performing first-principles molecular-dynamics simulations of systems with variable occupancies. We adopt a matrix representation for the one-particle statistical operator Gamma, to introduce a ``projected'' free energy functional G that depends on the Kohn-Sham orbitals only and that is invariant under their unitary transformations. The Liouville equation [ Gamma , H ] = 0 is always satisfied, guaranteeing a very efficient and stable variational minimization algorithm that can be extended to non-conventional entropic formulations or fictitious thermal distributions.Comment: 5 pages, two-column style with 2 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#nm_meta

    Microscopic mechanism for mechanical polishing of diamond (110) surfaces

    Full text link
    Mechanically induced degradation of diamond, as occurs during polishing, is studied using total--energy pseudopotential calculations. The strong asymmetry in the rate of polishing between different directions on the diamond (110) surface is explained in terms of an atomistic mechanism for nano--groove formation. The post--polishing surface morphology and the nature of the polishing residue predicted by this mechanism are consistent with experimental evidence.Comment: 4 pages, 5 figure
    • …
    corecore