493 research outputs found

    Ultracold atomic Fermi-Bose mixtures in bichromatic optical dipole traps: a novel route to study fermion superfluidity

    Full text link
    The study of low density, ultracold atomic Fermi gases is a promising avenue to understand fermion superfluidity from first principles. One technique currently used to bring Fermi gases in the degenerate regime is sympathetic cooling through a reservoir made of an ultracold Bose gas. We discuss a proposal for trapping and cooling of two-species Fermi-Bose mixtures into optical dipole traps made from combinations of laser beams having two different wavelengths. In these bichromatic traps it is possible, by a proper choice of the relative laser powers, to selectively trap the two species in such a way that fermions experience a stronger confinement than bosons. As a consequence, a deep Fermi degeneracy can be reached having at the same time a softer degenerate regime for the Bose gas. This leads to an increase in the sympathetic cooling efficiency and allows for higher precision thermometry of the Fermi-Bose mixture

    Casimir force between eccentric cylinders

    Get PDF
    We consider the Casimir interaction between a cylinder and a hollow cylinder, both conducting, with parallel axis and slightly different radii. The Casimir force, which vanishes in the coaxial situation, is evaluated for both small and large eccentricities using the proximity approximation. The cylindrical configuration offers various experimental advantages with respect to the parallel planes or the plane-sphere geometries, leading to favourable conditions for the search of extra-gravitational forces in the micrometer range and for the observation of finite temperature corrections.Comment: To be published in Europhysics Letters. 7 pages, 4 figure

    Measurement-induced Squeezing of a Bose-Einstein Condensate

    Full text link
    We discuss the dynamics of a Bose-Einstein condensate during its nondestructive imaging. A generalized Lindblad superoperator in the condensate master equation is used to include the effect of the measurement. A continuous imaging with a sufficiently high laser intensity progressively drives the quantum state of the condensate into number squeezed states. Observable consequences of such a measurement-induced squeezing are discussed.Comment: 4 pages, 2 figures, submitted to PR

    Uncertainty-principle noise in vacuum-tunneling transducers

    Full text link
    The fundamental sources of noise in a vacuum-tunneling probe used as an electromechanical transducer to monitor the location of a test mass are examined using a first-quantization formalism. We show that a tunneling transducer enforces the Heisenberg uncertainty principle for the position and momentum of a test mass monitored by the transducer through the presence of two sources of noise: the shot noise of the tunneling current and the momentum fluctuations transferred by the tunneling electrons to the test mass. We analyze a number of cases including symmetric and asymmetric rectangular potential barriers and a barrier in which there is a constant electric field. Practical configurations for reaching the quantum limit in measurements of the position of macroscopic bodies with such a class of transducers are studied

    Quantum dissipative effects in moving mirrors: a functional approach

    Full text link
    We use a functional approach to study various aspects of the quantum effective dynamics of moving, planar, dispersive mirrors, coupled to scalar or Dirac fields, in different numbers of dimensions. We first compute the Euclidean effective action, and use it to derive the imaginary part of the `in-out' effective action. We also obtain, for the case of the real scalar field in 1+1 dimensions, the Schwinger-Keldysh effective action and a semiclassical Langevin equation that describes the motion of the mirror including noise and dissipative effects due to its coupling to the quantum fields.Comment: References added. Version to appear in Phys. Rev.

    Photon creation in a spherical oscillating cavity

    Get PDF
    We study the photon creation inside a perfectly conducting, spherical oscillating cavity. The electromagnetic field inside the cavity is described by means of two scalar fields which satisfy Dirichlet and (generalized) Neumann boundary conditions. As a preliminary step, we analyze the dynamical Casimir effect for both scalar fields. We then consider the full electromagnetic case. The conservation of angular momentum of the electromagnetic field is also discussed, showing that photons inside the cavity are created in singlet states.Comment: 14 pages, no figure

    Are violations to temporal Bell inequalities there when somebody looks?

    Get PDF
    The possibility of observing violations of temporal Bell inequalities, originally proposed by Leggett as a mean of testing the quantum mechanical delocalization of suitably chosen macroscopic bodies, is discussed by taking into account the effect of the measurement process. A general criterion quantifying this possibility is defined and shown not to be fulfilled by the various experimental configurations proposed so far to test inequalities of different forms.Comment: 7 pages, 1 eps figure, needs europhys.sty and euromacr.tex, enclosed in the .tar.gz file; accepted for publication in Europhysics Letter

    Exact Casimir interaction between eccentric cylinders

    Get PDF
    The Casimir force is the ultimate background in ongoing searches of extra-gravitational forces in the micrometer range. Eccentric cylinders offer favorable experimental conditions for such measurements as spurious gravitational and electrostatic effects can be minimized. Here we report on the evaluation of the exact Casimir interaction between perfectly conducting eccentric cylinders using a mode summation technique, and study different limiting cases of relevance for Casimir force measurements, with potential implications for the understanding of mechanical properties of nanotubes.Comment: 5 pages, 4 figure
    • …
    corecore