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Abstract. – We consider the Casimir interaction between a cylinder and a hollow cylin-
der, both conducting, with parallel axis and slightly different radii. The Casimir force, which
vanishes in the coaxial situation, is evaluated for both small and large eccentricities using the
proximity approximation. The cylindrical configuration offers various experimental advantages
with respect to the parallel planes or the plane-sphere geometries, leading to favourable condi-
tions for the search of extra-gravitational forces in the micrometer range and for the observation
of finite-temperature corrections.

Casimir forces are one of the most striking macroscopic manifestations of vacuum quantum
fluctuations. Recently, there has been an increasing interest in experimental and theoretical
aspects of these forces [1]. The force between parallel conducting plates as originally predicted
in [2], after a first evidence reported in [3], has recently been measured at the 15% accuracy
level using cantilevers [4]. A force of similar nature between a conducting plane and a conduct-
ing sphere, after pioneering studies [5], has also been investigated with progressively higher pre-
cision and accuracy. The latter force has been measured by using torsion balances [6], atomic
force microscopes [7], and micromechanical resonators whose motion was detected through
capacitance bridges [8] and fiber optic interferometers [9]. Casimir forces may be relevant
in nanotechnology, giving rise to interesting non-linear dynamics for nanoelectromechanical
systems [10]. Also, the predicted existence of new interactions with coupling comparable to
gravity but range in the micrometer region [11] adds strong motivations to control the Casimir
force at the highest level of accuracy. This requires taking into account many deviations from
the ideal situation initially discussed in [2], among these the corrections due to roughness and
finite conductivity of the metallic surfaces, and the effect of the finite temperature, somewhat
c© EDP Sciences
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Fig. 1 – Cylindrical geometry for measuring Casimir forces. (a) An inner cylinder of radius a and a
hollow cylinder of radius b, with the origin of coordinates on the axis of the inner cylinder, and distance
ε between the two axes. The function r(θ) gives the radial coordinate of the outer cylinder from the
axis of the inner one. (b) The effective area for the application of the proximity approximation, as
the geometric mean of dS1 and dS2: dAeff(θ) =

√
dS1 dS2.

controversial [12,13], yet to be observed. Moreover, the observation of the thermal contribution
is important in itself as a macroscopic test of quantum field theories at finite temperature.

In this paper we analyze a geometry different from the previously studied cases of two
parallel planes or a plane-sphere. We consider one conducting cylinder inserted inside a
hollow conducting cylinder, with parallel axis. In the ideal coaxial case, the two axes will
coincide and, based on symmetry arguments, this will result in a null Casimir force, while in
the general eccentric case a finite force will arise. This configuration may be useful to minimize
spurious gravitational and electromagnetic effects, and has specific advantages with respect
to the parallel plane and the plane-sphere geometries. The discussion will naturally lead to
some proposal for experimental schemes which should allow to get more stringent limits to
extra-gravitational forces in the micrometer range or to achieve an easier observation of the
finite-temperature corrections to the Casimir force.

Let us consider two eccentric cylinders of length L, with radii a and b, respectively (with
L � a, b to neglect border effects), as depicted in fig. 1. We will mainly focus on the particular
case a � b, since in this case the Casimir force is enhanced. The distance between the axes
of the cylinders, a measure of the eccentricity, will be denoted by ε. In order to evaluate the
Casimir energy we will use the proximity approximation [14]. This is partially justified by
recent results [15] showing that, for concentric cylinders, the proximity approximation repro-
duces the exact results far beyond its expected range of validity. This result holds as long as one
uses the geometric mean prescription for the effective area [16], a prescription which arises nat-
urally in a semiclassical framework [15,17]. It is then reasonable to assume that this is also true
at least for slightly eccentric cylinders (the proximity force approximation could be improved
using the geometric optics approach put forward in [18], or the numerical method of [16]).

From the Casimir energy per unit area for parallel plates separated by a distance l,

E(0)
pp (l) = − π2h̄c

720l3
, (1)
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the interaction energy between cylinders is, using the proximity approximation,

E
(0)
I �

∫ 2π

0

dAeff(θ)E(0)
pp (r(θ) − a), (2)

where r(θ) is the distance of a point of the external cylinder to the axis of the inner one,
and dAeff(θ) is the geometric mean of two infinitesimal adjacent areas on both cylinders.
Following the notations introduced in fig. 1, we find that r(θ) =

√
b2 − ε2 cos2 θ + ε sin θ and

dAeff = L
√

ab + εa sin θ dθ. The interaction energy and the force between the two cylinders
F

(0)
y = −∂EI/∂ε depend on the dimensionless parameters ε/b and ε̃ = ε/(b − a). Since we

are considering a � b, we will always have ε/b � 1 and ε̃ � ε/b. Thus to lowest order in
ε/b we obtain

F (0)
y = − π2h̄cLa

240(b − a)4

∫ 2π

0

dθ sin θ

(1 + ε̃ sin θ)4
� ε̃

1 + ε̃2

4

(1 − ε̃ 2)
7
2
F0, (3)

where F0 = −π3h̄cLa/60(b − a)4 is twice the equivalent Casimir force between two parallel
plates with the same area of the two cylinders and spaced by a distance b − a. It is worth
noting that the force always makes the equilibrium position of ideal coaxial cylinders unstable.

For nearly concentric cylinders, ε̃ � 1, the force is linear in the distance between the axes
of the cylinders:

F (0)
y � ε

b − a
F0. (4)

This corresponds to an inverted harmonic oscillator, and explicitly shows the instability. In
the opposite case, when ε̃ → 1, we get

F (0)
y � 5

32
√

2

(
b − a

d

)7/2

F0, (5)

where d = b − a − ε is the distance between the cylinders. The behavior of the force in the
large eccentricity limit ε̃ → 1 is similar to that of a cylinder parallel to a plane. Indeed, with
a cylinder of radius a at a distance d � a from a plane, the force is

F (0)
cp (d) � −π2h̄cL

120a3

∫ π/2

0

dθ(
1 + d

a − cos θ
)4 � −π3h̄cLa1/2

384
√

2d7/2
. (6)

The scaling of the Casimir force with distance is intermediate between the plane-spherical
(∝ d−3) and the parallel plate configuration (∝ d−4), as well as the absolute force signal, for
typical values of the geometrical parameters. Indeed, the relative strengths of the forces for a
common distance d between the two bodies are

F
(0)
pp (d)

F
(0)
cp (d)

=
0.72A

L(ad)1/2
,

F
(0)
cp (d)

F
(0)
sp (d)

=
0.66L

R

(a

d

)1/2

, (7)

where F
(0)
pp is the force between parallel plates of area A, F

(0)
sp is the force between the sphere

and the plane, with R the radius of the sphere. If, for instance, we choose A = 1 mm2,
a = R = 100 µm, L = 5 mm and d = 1 µm, the Casimir force ratios are F

(0)
pp /F

(0)
cp � 14 and
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Fig. 2 – Combined thermal and conductivity corrections to the Casimir force for various geometries.
We depict the relative contributions F T,C/F (0) vs. the distance d between gold metallic surfaces in
the case of slightly eccentric cylinders, cylinder-plane, plane-plane, and sphere-plane configurations,
for two different finite-conductivity scenarios, the so-called plasma model (a) [19] and a model that
excludes the zero-frequency TE mode (b) [13]. For both figures parameters are a = R = 100 µm and
T = 300 K.

F
(0)
cp /F

(0)
sp � 330. With respect to the plane-spherical situation, one can enhance the signal

by exploiting the linear dimension, i.e. the size L, at least as far as the parallelism between
the axes of cylinder and plane or their surface roughness do not become an issue.

For an accurate comparison between experiment and theory we need to consider the devi-
ations of the predicted force from the ideal situation of perfect conductors, zero temperature,
and zero roughness. For typical surfaces and realistic experimental sensitivities, roughness cor-
rections are not relevant at the distances we are interested in (d > 1 µm). On the other hand,
combined temperature and conductivity corrections are important in this range of distances.
These corrections have been computed using different approaches, leading to controversial
predictions for the Casimir force between parallel plates [12,13,19].

We have computed the combined corrections due to finite temperature and finite conductiv-
ity using two distinct theoretical models. In fig. 2a we show the combined corrections obtained
using the plasma model. Our starting point is the expression for the interaction energy per
unit area in the plane-plane geometry at finite temperature and finite conductivity, Epp, which
was derived in [19] using the plasma model for the dielectric function in the Lifshitz formula.
Figure 2b depicts the combined corrections using the model described in [13], in which the
transverse electric zero mode does not contribute at all to the Casimir force. Our calculation
is based on fig. 4 of [13], which shows the surface force density between parallel gold metallic
plates. Such force density was computed using the experimental data for the permittivity of
gold as a function of frequency [20]. The results for the different geometries shown in both
figures have been numerically obtained from the plane-plane configuration using the proximity
force approximation. In the particular case of slightly eccentric cylinders, the Casimir force
can be easily obtained from Epp. Indeed, the interaction energy between cylinders is given by
eq. (2), where E

(0)
pp should be replaced by Epp. Expanding the right-hand side of eq. (2) in

powers of ε̃, one can derive the force between nearly concentric cylinders (ε̃ � 1) in terms of
the second derivative of the energy Epp evaluated at a separation l = b − a, namely

Fy � −επLa
d2Epp

dl2

∣∣∣∣
(b−a)

. (8)
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Fig. 3 – Experimental schemes for detecting Casimir forces with slightly eccentric cylinders. (a) The
inner cylinder is rigidly connected to a torsional balance and the signal to restore the zero eccentricity
configuration after a controlled displacement is monitored. (b) The hollow cylinder is connected to a
cantilever and the frequency shift induced in the small oscillations is measured.

We see that, in the range where temperature corrections can be more likely observable
(above � 3 µm), both models predict the same hierarchy for the various geometries, with the
larger relative correction for the sphere-plane, followed by the cylinder-plane, plane-plane,
and slightly eccentric cylinders, respectively. At the same time, the corrections in the same
range of distances are significantly different to allow for a crucial test of the models, with an
enhancement and a depletion of the measurable force with respect to the zero-temperature
case for the two models, respectively, resulting in predicted forces differing by almost a factor 2.
The absolute magnitude of the force in the plane-cylindrical case is much larger than that of
the sphere-plane situation and, with respect to the parallel plates, there are less issues of dust
and parallelism, making this configuration more favourable for looking at thermal corrections.
Instead, in the case of slightly eccentric cylinders the corrections are weaker than those in the
other three geometries, making this configuration more robust for seeking extra-gravitational
forces with suppressed background

We now discuss possible experimental arrangements for measuring the Casimir force be-
tween cylinders. In the case of the almost coaxial configuration ε̃ � 1, one possibility is to
repeat a microscopic version of the experiment described in [21] to test universal gravitation
in the cm range, with a small torsional balance mounted on the ends of the internal cylin-
der. In this case, the unstable force could be evidenced by intentionally creating a controlled
eccentricity and measuring the feedback force required to bring the internal cylinder to zero
eccentricity, as depicted in fig. 3a. A somewhat simpler situation can be imagined by attach-
ing the external hollow cylinder to a cantilever, then creating a resonator of effective mass M
and natural angular frequency ω0, see fig. 3b. In the presence of the inner cylinder (kept in
a fixed position), the frequency of the resonator for small oscillations around the equilibrium
position is renormalized by the negative spring constant of the Casimir force (see eq. (4)).
Assuming a small frequency shift (i.e. a Casimir force much smaller than the restoring force
of the resonator), and achievable values a = 100 µm, L = 5 mm, M = 10−6 kg, b − a = 1 µm
and ω0 = 103 s−1, we obtain ∆ω/ω0 = −F0/2(b−a)Mω2

0 = −4.25×10−3, which is within the
sensitivity of frequency-shift techniques on microresonators [9, 22].
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This configuration has some advantages over the parallel-plates geometry. If there is no
residual charge in the inner cylinder, the system remains neutral and screened by the external
one from background noise sources, and from residual charges in the outer cylinder. When the
inner cylinder has a residual charge, there will be a small potential difference V between the
cylinders, and the coaxial configuration will be electrostatically unstable. The Laplace equa-
tion for the electrostatic potential φ in the region between the two cylinders can be solved by
imposing the boundary conditions φ(a, θ) = 0 and φ(r(θ), θ) = V . To first order in ε/b we find

φ(r, θ) � V

log(b/a)

[
log

( r

a

)
− ε

r2 − a2

b2 − a2

sin θ

r

]
. (9)

The electrostatic force between cylinders can be computed as FE
y � ε0πV 2Laε/(b−a)3, where

ε0 is the electric permittivity of vacuum. This result, which shows the electrostatic instabil-
ity, can also be obtained from FE

y = −(∂UE/∂ε)V , using a proximity approximation for the
electrostatic energy UE:

UE � 1
2
ε0V

2La

∫ 2π

0

dθ

r(θ) − a
. (10)

The electrostatic instability can be avoided by putting the cylinders in contact, something
unavoidable during the preliminary stages of parallelization. Then the residual charge of the
inner cylinder will flow to the hollow cylinder, apart from a residual charge due to imperfec-
tions and finite length of the cylinders. This residual charge will be smaller than for other
geometries, as the same discharging procedure does not work in the other configurations. If
some residual potential difference still remains, it will contribute to the frequency shift, how-
ever it can be eliminated by a counterbias as in all the Casimir experiments performed so far.
The electrostatic instability can be exploited to improve the parallelism between cylinders.
One could apply a time-dependent potential between the cylinders and measure the force,
as in the experiments to test the inverse-square Coulomb law. Parallelism and concentricity
would be maximum for a minimum value of the force. Moreover, the expected gravitational
force is obviously null, this being an advantage to look for intrinsically short-range extra-
gravitational forces. These should violate the Gauss law, as could be evidenced by performing
an experiment analogous to that done with macroscopic cylinders in [21].

In conclusion, we have computed the Casimir force between conducting eccentric cylinders,
using the proximity approximation, also including finite-temperature and conductivity effects.
Our results suggest that cylindrical configurations could be useful to precisely measure the
Casimir force and related signals superimposed to it. We have briefly described experimental
configurations which look promising, either to minimize spurious effects of gravitational, elec-
trostatic, conductivity and thermal origin to search for new forces, as in the case of slightly
eccentric cylinders, or for intentionally looking at finite-temperature corrections to the Casimir
force, as in the cylindrical-plane configuration. Recent progress in machining nanomechanical
structures should make our proposal feasible.
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