94,024 research outputs found
Decay of distance autocorrelation and Lyapunov exponents
This work presents numerical evidences that for discrete dynamical systems
with one positive Lyapunov exponent the decay of the distance autocorrelation
is always related to the Lyapunov exponent. Distinct decay laws for the
distance autocorrelation are observed for different systems, namely exponential
decays for the quadratic map, logarithmic for the H\'enon map and power-law for
the conservative standard map. In all these cases the decay exponent is close
to the positive Lyapunov exponent. For hyperbolic conservative systems, the
power-law decay of the distance autocorrelation tends to be guided by the
smallest Lyapunov exponent.Comment: 7 pages, 8 figure
Characterizing Weak Chaos using Time Series of Lyapunov Exponents
We investigate chaos in mixed-phase-space Hamiltonian systems using time
series of the finite- time Lyapunov exponents. The methodology we propose uses
the number of Lyapunov exponents close to zero to define regimes of ordered
(stickiness), semi-ordered (or semi-chaotic), and strongly chaotic motion. The
dynamics is then investigated looking at the consecutive time spent in each
regime, the transition between different regimes, and the regions in the
phase-space associated to them. Applying our methodology to a chain of coupled
standard maps we obtain: (i) that it allows for an improved numerical
characterization of stickiness in high-dimensional Hamiltonian systems, when
compared to the previous analyses based on the distribution of recurrence
times; (ii) that the transition probabilities between different regimes are
determined by the phase-space volume associated to the corresponding regions;
(iii) the dependence of the Lyapunov exponents with the coupling strength.Comment: 8 pages, 6 figure
- …