246,235 research outputs found

    Correlations among superconductivity, structural instability, and band filling in Nb1-xB2 at the critical point x=0.2

    Full text link
    We performed an extensive investigation on the correlations among superconductivity, structural instability and band filling in Nb1-xB2 materials. Structural measurements reveal that a notable phase transformation occurs at x=0.2, corresponding to the Fermi level (EF) in the pseudogap with the minimum total density of states (DOS) as demonstrated by the first-principles calculations. Superconductivity in Nb1-xB2 generally becomes visible in the Nb-deficient materials with x=0.2. Electron energy-loss spectroscopy (EELS) measurements on B K-edge directly demonstrated the presence of a chemical shift arising from the structural transformation. Our systematical experimental results in combination with theoretical analysis suggest that the emergence of hole states in the sigma-bands plays an important role for understanding the superconductivity and structural transition in Nb1-xB2.Comment: 16 pages, 4 figure

    Highly frustrated spin-lattice models of magnetism and their quantum phase transitions: A microscopic treatment via the coupled cluster method

    Full text link
    We outline how the coupled cluster method of microscopic quantum many-body theory can be utilized in practice to give highly accurate results for the ground-state properties of a wide variety of highly frustrated and strongly correlated spin-lattice models of interest in quantum magnetism, including their quantum phase transitions. The method itself is described, and it is shown how it may be implemented in practice to high orders in a systematically improvable hierarchy of (so-called LSUBmm) approximations, by the use of computer-algebraic techniques. The method works from the outset in the thermodynamic limit of an infinite lattice at all levels of approximation, and it is shown both how the "raw" LSUBmm results are themselves generally excellent in the sense that they converge rapidly, and how they may accurately be extrapolated to the exact limit, mm \rightarrow \infty, of the truncation index mm, which denotes the {\it only} approximation made. All of this is illustrated via a specific application to a two-dimensional, frustrated, spin-half J1XXZJ^{XXZ}_{1}--J2XXZJ^{XXZ}_{2} model on a honeycomb lattice with nearest-neighbor and next-nearest-neighbor interactions with exchange couplings J1>0J_{1}>0 and J2κJ1>0J_{2} \equiv \kappa J_{1} > 0, respectively, where both interactions are of the same anisotropic XXZXXZ type. We show how the method can be used to determine the entire zero-temperature ground-state phase diagram of the model in the range 0κ10 \leq \kappa \leq 1 of the frustration parameter and 0Δ10 \leq \Delta \leq 1 of the spin-space anisotropy parameter. In particular, we identify a candidate quantum spin-liquid region in the phase space

    Spin-1/2 J1J_{1}-J2J_{2} Heisenberg model on a cross-striped square lattice

    Full text link
    Using the coupled cluster method (CCM) we study the full (zero-temperature) ground-state (GS) phase diagram of a spin-half (s=1/2s=1/2) J1J_{1}-J2J_{2} Heisenberg model on a cross-striped square lattice. Each site of the square lattice has 4 nearest-neighbour exchange bonds of strength J1J_{1} and 2 next-nearest-neighbour (diagonal) bonds of strength J2J_{2}. The J2J_{2} bonds are arranged so that the basic square plaquettes in alternating columns have either both or no J2J_{2} bonds included. The classical (ss \rightarrow \infty) version of the model has 4 collinear phases when J1J_{1} and J2J_{2} can take either sign. Three phases are antiferromagnetic (AFM), showing so-called N\'{e}el, double N\'{e}el and double columnar striped order respectively, while the fourth is ferromagnetic. For the quantum s=1/2s=1/2 model we use the 3 classical AFM phases as CCM reference states, on top of which the multispin-flip configurations arising from quantum fluctuations are incorporated in a systematic truncation hierarchy. Calculations of the corresponding GS energy, magnetic order parameter and the susceptibilities of the states to various forms of valence-bond crystalline (VBC) order are thus carried out numerically to high orders of approximation and then extrapolated to the (exact) physical limit. We find that the s=1/2s=1/2 model has 5 phases, which correspond to the four classical phases plus a new quantum phase with plaquette VBC order. The positions of the 5 quantum critical points are determined with high accuracy. While all 4 phase transitions in the classical model are first order, we find strong evidence that 3 of the 5 quantum phase transitions in the s=1/2s=1/2 model are of continuous deconfined type

    A frustrated spin-1/2 Heisenberg antiferromagnet on a chevron-square lattice

    Full text link
    The coupled cluster method (CCM) is used to study the zero-temperature properties of a frustrated spin-half (s=12s={1}{2}) J1J_{1}--J2J_{2} Heisenberg antiferromagnet (HAF) on a 2D chevron-square lattice. Each site on an underlying square lattice has 4 nearest-neighbor exchange bonds of strength J1>0J_{1}>0 and 2 next-nearest-neighbor (diagonal) bonds of strength J2xJ1>0J_{2} \equiv x J_{1}>0, with each square plaquette having only one diagonal bond. The diagonal bonds form a chevron pattern, and the model thus interpolates smoothly between 2D HAFs on the square (x=0x=0) and triangular (x=1x=1) lattices, and also extrapolates to disconnected 1D HAF chains (xx \to \infty). The classical (ss \to \infty) version of the model has N\'{e}el order for 0<x<xcl0 < x < x_{{\rm cl}} and a form of spiral order for xcl<x<x_{{\rm cl}} < x < \infty, where xcl=12x_{{\rm cl}} = {1}{2}. For the s=12s={1}{2} model we use both these classical states, as well as other collinear states not realized as classical ground-state (GS) phases, as CCM reference states, on top of which the multispin-flip configurations resulting from quantum fluctuations are incorporated in a systematic truncation scheme, which we carry out to high orders and extrapolate to the physical limit. We calculate the GS energy, GS magnetic order parameter, and the susceptibilities of the states to various forms of valence-bond crystalline (VBC) order, including plaquette and two different dimer forms. We find that the s=12s={1}{2} model has two quantum critical points, at xc10.72(1)x_{c_{1}} \approx 0.72(1) and xc21.5(1)x_{c_{2}} \approx 1.5(1), with N\'{e}el order for 0<x<xc10 < x < x_{c_{1}}, a form of spiral order for xc1<x<xc2x_{c_{1}} < x < x_{c_{2}} that includes the correct three-sublattice 120120^{\circ} spin ordering for the triangular-lattice HAF at x=1x=1, and parallel-dimer VBC order for xc2<x<x_{c_{2}} < x < \infty

    Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism

    Get PDF
    Schmallenberg virus (SBV) is a newly emerged orthobunyavirus (family Bunyaviridae) that has caused severe disease in the offspring of farm animals across Europe. Like all orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that is encapsidated by the viral nucleocapsid (N) protein in the form of a ribonucleoprotein complex (RNP). We recently reported the three-dimensional structure of SBV N that revealed a novel fold. Here we report the crystal structure of the SBV N protein in complex with a 42-nt-long RNA to 2.16 Å resolution. The complex comprises a tetramer of N that encapsidates the RNA as a cross-shape inside the protein ring structure, with each protomer bound to 11 ribonucleotides. Eight bases are bound in the positively charged cleft between the N- and C-terminal domains of N, and three bases are shielded by the extended N-terminal arm. SBV N appears to sequester RNA using a different mechanism compared with the nucleoproteins of other negative-sense RNA viruses. Furthermore, the structure suggests that RNA binding results in conformational changes of some residues in the RNA-binding cleft and the N- and C-terminal arms. Our results provide new insights into the novel mechanism of RNA encapsidation by orthobunyaviruses

    Localization of Relative-Position of Two Atoms Induced by Spontaneous Emission

    Full text link
    We revisit the back-action of emitted photons on the motion of the relative position of two cold atoms. We show that photon recoil resulting from the spontaneous emission can induce the localization of the relative position of the two atoms through the entanglement between the spatial motion of individual atoms and their emitted photons. The result provides a more realistic model for the analysis of the environment-induced localization of a macroscopic object.Comment: 8 pages and 4 figure
    corecore