3,624 research outputs found

    Isotropization of Bianchi type models and a new FRW solution in Brans-Dicke theory

    Get PDF
    Using scaled variables we are able to integrate an equation valid for isotropic and anisotropic Bianchi type I, V, IX models in Brans-Dicke (BD) theory. We analyze known and new solutions for these models in relation with the possibility that anisotropic models asymptotically isotropize, and/or possess inflationary properties. In particular, a new solution of curve (k≠0k\neq0) Friedmann-Robertson-Walker (FRW) cosmologies in Brans-Dicke theory is analyzed.Comment: 15 pages, 4 postscript figures, to appear in Gen. Rel. Grav., special issue dedicated in honour of Prof. H. Dehne

    Ultrafast Momentum Imaging of Pseudospin-Flip Excitations in Graphene

    Get PDF
    The pseudospin of Dirac electrons in graphene manifests itself in a peculiar momentum anisotropy for photo-excited electron-hole pairs. These interband excitations are in fact forbidden along the direction of the light polarization, and are maximum perpendicular to it. Here, we use time- and angle-resolved photoemission spectroscopy to investigate the resulting unconventional hot carrier dynamics, sampling carrier distributions as a function of energy and in-plane momentum. We first show that the rapidly-established quasi-thermal electron distribution initially exhibits an azimuth-dependent temperature, consistent with relaxation through collinear electron-electron scattering. Azimuthal thermalization is found to occur only at longer time delays, at a rate that depends on the substrate and the static doping level. Further, we observe pronounced differences in the electron and hole dynamics in n-doped samples. By simulating the Coulomb- and phonon-mediated carrier dynamics we are able to disentangle the influence of excitation fluence, screening, and doping, and develop a microscopic picture of the carrier dynamics in photo-excited graphene. Our results clarify new aspects of hot carrier dynamics that are unique to Dirac materials, with relevance for photo-control experiments and optoelectronic device applications.Comment: 23 pages, 12 figure

    Edge-functionalized and substitutional doped graphene nanoribbons: electronic and spin properties

    Full text link
    Graphene nanoribbons are the counterpart of carbon nanotubes in graphene-based nanoelectronics. We investigate the electronic properties of chemically modified ribbons by means of density functional theory. We observe that chemical modifications of zigzag ribbons can break the spin degeneracy. This promotes the onset of a semiconducting-metal transition, or of an half-semiconducting state, with the two spin channels having a different bandgap, or of a spin-polarized half-semiconducting state -where the spins in the valence and conduction bands are oppositely polarized. Edge functionalization of armchair ribbons gives electronic states a few eV away from the Fermi level, and does not significantly affect their bandgap. N and B produce different effects, depending on the position of the substitutional site. In particular, edge substitutions at low density do not significantly alter the bandgap, while bulk substitution promotes the onset of semiconducting-metal transitions. Pyridine-like defects induce a semiconducting-metal transition.Comment: 12 pages, 5 figure

    Tracking primary thermalization events in graphene with photoemission at extreme timescales

    Full text link
    Direct and inverse Auger scattering are amongst the primary processes that mediate the thermalization of hot carriers in semiconductors. These two processes involve the annihilation or generation of an electron-hole pair by exchanging energy with a third carrier, which is either accelerated or decelerated. Inverse Auger scattering is generally suppressed, as the decelerated carriers must have excess energies higher than the band gap itself. In graphene, which is gapless, inverse Auger scattering is instead predicted to be dominant at the earliest time delays. Here, <8<8 femtosecond extreme-ultraviolet pulses are used to detect this imbalance, tracking both the number of excited electrons and their kinetic energy with time- and angle-resolved photoemission spectroscopy. Over a time window of approximately 25 fs after absorption of the pump pulse, we observe an increase in conduction band carrier density and a simultaneous decrease of the average carrier kinetic energy, revealing that relaxation is in fact dominated by inverse Auger scattering. Measurements of carrier scattering at extreme timescales by photoemission will serve as a guide to ultrafast control of electronic properties in solids for PetaHertz electronics.Comment: 16 pages, 8 figure

    Simple Pendulum Revisited

    Full text link
    We describe a 8085 microprocessor interface developed to make reliable time period measurements. The time period of each oscillation of a simple pendulum was measured using this interface. The variation of the time period with increasing oscillation was studied for the simple harmonic motion (SHM) and for large angle initial displacements (non-SHM). The results underlines the importance of the precautions which the students are asked to take while performing the pendulum experiment.Comment: 17 pages with 10 figure

    Direct evidence for efficient ultrafast charge separation in epitaxial WS2_2/graphene heterostructure

    Full text link
    We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2_2 and graphene. This heterostructure combines the benefits of a direct gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2_2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2_2 layer. The resulting charge transfer state is found to have a lifetime of ∼1\sim1\,ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2_2 and graphene bands as revealed by high resolution ARPES. In combination with spin-selective excitation using circularly polarized light the investigated WS2_2/graphene heterostructure might provide a new platform for efficient optical spin injection into graphene.Comment: 28 pages, 14 figure

    Direct evidence for efficient ultrafast charge separation in epitaxial WS<sub>2</sub>/graphene heterostructures

    No full text
    We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2 and graphene. This heterostructure combines the benefits of a direct-gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2 layer. The resulting charge-separated transient state is found to have a lifetime of ∼1 ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2 and graphene bands as revealed by high-resolution ARPES. In combination with spin-selective optical excitation, the investigated WS2/graphene heterostructure might provide a platform for efficient optical spin injection into graphene

    Synthesis of Spherical 4R Mechanism for Path Generation using Differential Evolution

    Full text link
    The problem of path generation for the spherical 4R mechanism is solved using the Differential Evolution algorithm (DE). Formulas for the spherical geodesics are employed in order to obtain the parametric equation for the generated trajectory. Direct optimization of the objective function gives the solution to the path generation task without prescribed timing. Therefore, there is no need to separate this task into two stages to make the optimization. Moreover, the order defect problem can be solved without difficulty by means of manipulations of the individuals in the DE algorithm. Two examples of optimum synthesis showing the simplicity and effectiveness of this approach are included.Comment: Submitted to Mechanism and Machine Theor

    Relativistic static thin dust disks with an inner edge: An infinite family of new exact solutions

    Full text link
    An infinite family of new exact solutions of the Einstein vacuum equations for static and axially symmetric spacetimes is presented. All the metric functions of the solutions are explicitly computed and the obtained expressions are simply written in terms of oblate spheroidal coordinates. Furthermore, the solutions are asymptotically flat and regular everywhere, as it is shown by computing all the curvature scalars. These solutions describe an infinite family of thin dust disks with a central inner edge, whose energy densities are everywhere positive and well behaved, in such a way that their energy-momentum tensor are in fully agreement with all the energy conditions. Now, although the disks are of infinite extension, all of them have finite mass. The superposition of the first member of this family with a Schwarzschild black hole was presented previously [G. A. Gonz\'alez and A. C. Guti\'errez-Pi\~neres, arXiv: 0811.3002v1 (2008)], whereas that in a subsequent paper a detailed analysis of the corresponding superposition for the full family will be presented.Comment: 9 pages, 3 figure
    • …
    corecore