208 research outputs found
R-matrix calculation of electron collisions with electronically excited O2 molecules
Low-energy electron collisions with O molecules are studied using the
fixed-bond R-matrix method. In addition to the O ground
state, integrated cross sections are calculated for elecron collisions with the
and excited states of O molecules. 13
target electronic states of O are included in the model within a valence
configuration interaction representations of the target states. Elastic cross
sections for the and excited states are
similar to the cross sections for the ground state. As in
case of excitation from the state, the O
resonance makes the dominant contribution to excitation cross sections from the
and states. The magnitude of excitation
cross sections from the state to the
state is about 10 time larger than the corresponding cross sections from the
to the state. For this
transition, our cross section at
4.5 eV agrees well with the available experimental value. These results should
be important for models of plasma discharge chemistry which often requires
cross sections between the excited electronic states of O.Comment: 26 pages, 10 figure
Electron attachment to valence-excited CO
The possibility of electron attachment to the valence state of CO
is examined using an {\it ab initio} bound-state multireference configuration
interaction approach. The resulting resonance has symmetry;
the higher vibrational levels of this resonance state coincide with, or are
nearly coincident with, levels of the parent state. Collisional
relaxation to the lowest vibrational levels in hot plasma situations might
yield the possibility of a long-lived CO state.Comment: Revtex file + postscript file for one figur
Convergence of CI single center calculations of positron-atom interactions
The Configuration Interaction (CI) method using orbitals centered on the
nucleus has recently been applied to calculate the interactions of positrons
interacting with atoms. Computational investigations of the convergence
properties of binding energy, phase shift and annihilation rate with respect to
the maximum angular momentum of the orbital basis for the e^+Cu and PsH bound
states, and the e^+-H scattering system were completed. The annihilation rates
converge very slowly with angular momentum, and moreover the convergence with
radial basis dimension appears to be slower for high angular momentum. A number
of methods of completing the partial wave sum are compared, an approach based
on a Delta X_J = a/(J + 1/2)^n + b/(J + 1/2)^(n+1) form (with n = 4 for phase
shift (or energy) and n = 2 for the annihilation rate) seems to be preferred on
considerations of utility and underlying physical justification.Comment: 23 pages preprint RevTeX, 11 figures, submitted to PR
The Dipole Moment of Styrene
The dipole moment of styrene, calculated from eighteen solutions ranging in weight fraction from 0 - 100%, was found to be 0.181 D. The method and results of the measurement were compared to the method and results of Petro and Smyth for the same compound. It was concluded that the atomic polarization in styrene in small, and thus is taken into account by the measurement of the molar refraction at the sodium D line. It was further proposed that the relatively large dipole moments of trans-p, βdinitrostyrene and trans-p, βdicyano-styrene may be due, at least in part, to abnormally large atomic polarizations
The Dipole Moments and Molar Refractions of Several Trans-Beta-Nitrostyrenes
The dipole moments and molar refractions are reported for p-nitrostyrene (4.24 D, 44.3 ml.), trans-betanitrostyrene (4.50 D, 45.7 ml.), the p-methoxy (5.45 D, 56.3 ml.), p-methyl (4.97 D, 52.0 ml.), p-fluoro (3-12 D, 45.5ml), p-chloro (2.90 D, 51.8 ml.), p-bromo (3.02 D, 54.4 ml.), p-iodo (3.26 D, 58.0 ml.), p-nitro (0.83 D, 52.0 ml.), and p-cyano 0.96 D, 47.9 ml.) derivatives of trans-beta-nitrostyrene. It is suggested that the large dipole moments obtained for the p-nitro and p-cyano-beta-nitrostyrenes may be due to unusually large atomic polarizations which would not be taken into consideration by the present method of measurement and calculation
Towards the electron EDM search: Theoretical study of HfF+
We report first ab initio relativistic correlation calculations of potential
curves for ten low-lying electronic states, effective electric field on the
electron and hyperfine constants for the ^3\Delta_1 state of cation of a heavy
transition metal fluoride, HfF^+, that is suggested to be used as the working
state in experiments to search for the electric dipole moment of the electron.
It is shown that HfF^+ has deeply bound ^1\Sigma^+ ground state, its
dissociation energy is D_e=6.4 eV. The ^3\Delta_1 state is obtained to be the
relatively long-lived first excited state lying about 0.2 eV higher. The
calculated effective electric field E_eff=W_d|\Omega| acting on an electron in
this state is 5.84*10^{24}Hz/(e*cm)Comment: 4 page
- …