713 research outputs found
Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue - VI. AK Fornacis - a rare, bright K-type eclipsing binary
We present the results of the combined photometric and spectroscopic analysis
of a bright (V=9.14), nearby (d=31 pc), late-type detached eclipsing binary AK
Fornacis. This P=3.981 d system has not been previously recognised as a
double-lined spectroscopic binary, and this is the first full physical model of
this unique target. With the FEROS, CORALIE and HARPS spectrographs we
collected a number of high-resolution spectra in order to calculate radial
velocities of both components of the binary. Measurements were done with our
own disentangling procedure and the TODCOR technique, and were later combined
with the photometry from the ASAS and SuperWASP archives. We also performed an
atmospheric analysis of the component spectra with the Spectroscopy Made Easy
(SME) package. Our analysis shows that AK For consists of two active, cool
dwarfs having masses of and
M and radii of and
R, slightly less metal abundant than the Sun. Parameters of both
components are well reproduced by the models.
AK For is the brightest system among the known eclipsing binaries with K or M
type stars. Its orbital period is one of the longest and rotational velocities
one of the lowest, which allows us to obtain very precise radial velocity
measurements. The precision in physical parameters we obtained places AK For
among the binaries with the best mass measurements in the literature. It also
fills the gap in our knowledge of stars in the range of 0.5-0.8 M, and
between short and long-period systems. All this makes AK For a unique benchmark
for understanding the properties of low-mass stars.Comment: 9 pages, 11 figures, 3 tables, accpeted for publication in A&
An eccentric companion at the edge of the brown dwarf desert orbiting the 2.4 Msun giant star HIP67537
We report the discovery of a substellar companion around the giant star
HIP67537. Based on precision radial velocity measurements from CHIRON and FEROS
high-resolution spectroscopic data, we derived the following orbital elements
for HIP67537: msin = 11.1 M,
= 4.9 AU and = 0.59. Considering
random inclination angles, this object has 65% probability to be
above the theoretical deuterium-burning limit, thus it is one of the few known
objects in the planet to brown-dwarf transition region. In addition, we
analyzed the Hipparcos astrometric data of this star, from which we derived a
minimum inclination angle for the companion of 2 deg. This value
corresponds to an upper mass limit of 0.3 M, therefore the
probability that HIP67537 is stellar in nature is 7%. The large
mass of the host star and the high orbital eccentricity makes HIP67537 a
very interesting and rare substellar object. This is the second candidate
companion in the brown dwarf desert detected in the sample of intermediate-mass
stars targeted by the EXPRESS radial velocity program, which corresponds to a
detection fraction of = 1.6%. This value is larger than the
fraction observed in solar-type stars, providing new observational evidence of
an enhanced formation efficiency of massive substellar companions in massive
disks. Finally, we speculate about different formation channels for this
object.Comment: Accepted for publication to A&
Search for associations containing young stars (SACY) VII. New stellar and substellar candidate members in the young associations
The young associations offer us one of the best opportunities to study the
properties of young stellar and substellar objects and to directly image
planets thanks to their proximity (200 pc) and age (5-150 Myr).
However, many previous works have been limited to identifying the brighter,
more active members (1 M) owing to photometric survey
sensitivities limiting the detections of lower mass objects. We search the
field of view of 542 previously identified members of the young associations to
identify wide or extremely wide (1000-100,000 au in physical separation)
companions. We combined 2MASS near-infrared photometry (, , ) with
proper motion values (from UCAC4, PPMXL, NOMAD) to identify companions in the
field of view of known members. We collated further photometry and spectroscopy
from the literature and conducted our own high-resolution spectroscopic
observations for a subsample of candidate members. This complementary
information allowed us to assess the efficiency of our method. We identified 84
targets (45: 0.2-1.3 M, 17: 0.08-0.2 M, 22: 0.08 M)
in our analysis, ten of which have been identified from spectroscopic analysis
in previous young association works. For 33 of these 84, we were able to
further assess their membership using a variety of properties (X-ray emission,
UV excess, H, lithium and K I equivalent widths, radial velocities,
and CaH indices). We derive a success rate of 76-88% for this technique based
on the consistency of these properties. Once confirmed, the targets identified
in this work would significantly improve our knowledge of the lower mass end of
the young associations. Additionally, these targets would make an ideal new
sample for the identification and study of planets around nearby young stars.Comment: 28 pages, 24 figures, accepted in A&
Kepler-539: a young extrasolar system with two giant planets on wide orbits and in gravitational interaction
We confirm the planetary nature of Kepler-539b (aka Kepler object of interest
K00372.01), a giant transiting exoplanet orbiting a solar-analogue G2 V star.
The mass of Kepler-539b was accurately derived thanks to a series of precise
radial velocity measurements obtained with the CAFE spectrograph mounted on the
CAHA 2.2m telescope. A simultaneous fit of the radial-velocity data and Kepler
photometry revealed that Kepler-539b is a dense Jupiter-like planet with a mass
of Mp = 0.97 Mjup and a radius of Rp = 0.747 Rjup, making a complete circular
revolution around its parent star in 125.6 days. The semi-major axis of the
orbit is roughly 0.5 au, implying that the planet is at roughly 0.45 au from
the habitable zone. By analysing the mid-transit times of the 12 transit events
of Kepler-539b recorded by the Kepler spacecraft, we found a clear modulated
transit time variation (TTV), which is attributable to the presence of a planet
c in a wider orbit. The few timings available do not allow us to precisely
estimate the properties of Kepler-539c and our analysis suggests that it has a
mass between 1.2 and 3.6 Mjup, revolving on a very eccentric orbit (0.4<e<0.6)
with a period larger than 1000 days. The high eccentricity of planet c is the
probable cause of the TTV modulation of planet b. The analysis of the CAFE
spectra revealed a relatively high photospheric lithium content, A(Li)=2.48
dex, which, together with both a gyrochronological and isochronal analysis,
suggests that the parent star is relatively young.Comment: 11 pages, 14 figures, accepted for publication in Astronomy &
Astrophysic
Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars
CONTEXT. Exoplanet searches have demonstrated that giant planets are
preferentially found around metal-rich stars and that their fraction increases
with the stellar mass. AIMS. During the past six years, we have conducted a
radial velocity follow-up program of 166 giant stars, to detect substellar
companions, and characterizing their orbital properties. Using this
information, we aim to study the role of the stellar evolution in the orbital
parameters of the companions, and to unveil possible correlations between the
stellar properties and the occurrence rate of giant planets. METHODS. Using
FEROS and CHIRON spectra, we have computed precision radial velocities and we
have derived atmospheric and physical parameters for all of our targets.
Additionally, velocities computed from UCLES spectra are presented here. By
studying the periodic radial velocity signals, we have detected the presence of
several substellar companions. RESULTS. We present four new planetary systems
around the giant stars HIP8541, HIP74890, HIP84056 and HIP95124. Additionally,
we find that giant planets are more frequent around metal-rich stars, reaching
a peak in the detection of = 16.7% around stars with
[Fe/H] 0.35 dex. Similarly, we observe a positive correlation of the
planet occurrence rate with the stellar mass, between M 1.0 -2.1
M, with a maximum of = 13.0%, at M = 2.1
M. CONCLUSIONS. We conclude that giant planets are preferentially
formed around metal-rich stars. Also, we conclude that they are more
efficiently formed around more massive stars, in the mass range of M
1.0 - 2.1 M. These observational results confirm previous
findings for solar-type and post-MS hosting stars, and provide further support
to the core-accretion formation model.Comment: Accepted for publication in A&
Early optical spectra of nova V1369 Cen show presence of Lithium
We present early high resolution spectroscopic observations of the nova V1369
Cen. We have detected an absorption feature at 6695.6 \AA\, that we have
identified as blue--shifted Li I 6708 \AA. The absorption line,
moving at -550 km/s, was observed in five high-resolution spectra of the nova
obtained at different epochs. On the basis of the intensity of this absorption
line we infer that a single nova outburst can inject in the Galaxy
0.3 - 4.8 M. Given the current estimates of
Galactic nova rate, this amount is sufficient to explain the puzzling origin of
the overabundance of Lithium observed in young star populations.Comment: 6 pages, 5 figures, accepted for publication in ApJLetter
- …