2,241 research outputs found
Zero Energy of Plane-Waves for ELKOs
We consider the ELKO field in interaction through contorsion with its own
spin density, and we investigate the form of the consequent autointeractions;
to do so we take into account the high-density limit and find plane wave
solutions: such plane waves give rise to contorsional autointeractions for
which the Ricci metric curvature vanishes and therefore the energy density is
equal to zero identically. Consequences are discussed.Comment: 7 page
Is dark matter an extra-dimensional effect?
We investigate the possibility that the observed behavior of test particles
outside galaxies, which is usually explained by assuming the presence of dark
matter, is the result of the dynamical evolution of particles in higher
dimensional space-times. Hence, dark matter may be a direct consequence of the
presence of an extra force, generated by the presence of extra-dimensions,
which modifies the dynamic law of motion, but does not change the intrinsic
properties of the particles, like, for example, the mass (inertia). We discuss
in some detail several possible particular forms for the extra force, and the
acceleration law of the particles is derived. Therefore, the constancy of the
galactic rotation curves may be considered as an empirical evidence for the
existence of the extra dimensions.Comment: 11 pages, no figures, accepted for publication in MPLA; references
adde
Dark spinor models in gravitation and cosmology
We introduce and carefully define an entire class of field theories based on
non-standard spinors. Their dominant interaction is via the gravitational field
which makes them naturally dark; we refer to them as Dark Spinors. We provide a
critical analysis of previous proposals for dark spinors noting that they
violate Lorentz invariance. As a working assumption we restrict our analysis to
non-standard spinors which preserve Lorentz invariance, whilst being non-local
and explicitly construct such a theory. We construct the complete
energy-momentum tensor and derive its components explicitly by assuming a
specific projection operator. It is natural to next consider dark spinors in a
cosmological setting. We find various interesting solutions where the spinor
field leads to slow roll and fast roll de Sitter solutions. We also analyse
models where the spinor is coupled conformally to gravity, and consider the
perturbations and stability of the spinor.Comment: 43 pages. Several new sections and details added. JHEP in prin
Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach
Teleparallel gravity and its popular generalization gravity can be
formulated as fully invariant (under both coordinate transformations and local
Lorentz transformations) theories of gravity. Several misconceptions about
teleparallel gravity and its generalizations can be found in the literature,
especially regarding their local Lorentz invariance. We describe how these
misunderstandings may have arisen and attempt to clarify the situation. In
particular, the central point of confusion in the literature appears to be
related to the inertial spin connection in teleparallel gravity models. While
inertial spin connections are commonplace in special relativity, and not
something inherent to teleparallel gravity, the role of the inertial spin
connection in removing the spurious inertial effects within a given frame of
reference is emphasized here. The careful consideration of the inertial spin
connection leads to the construction of a fully invariant theory of
teleparallel gravity and its generalizations. Indeed, it is the nature of the
spin connection that differentiates the relationship between what have been
called good tetrads and bad tetrads and clearly shows that, in principle, any
tetrad can be utilized. The field equations for the fully invariant formulation
of teleparallel gravity and its generalizations are presented and a number of
examples using different assumptions on the frame and spin connection are
displayed to illustrate the covariant procedure. Various modified teleparallel
gravity models are also briefly reviewed.Comment: v2: 72 pages, revised version, references added, matches published
versio
Space-time evolution induced by spinor fields with canonical and non-canonical kinetic terms
We study spinor field theories as an origin to induce space-time evolution.
Self-interacting spinor fields with canonical and non-canonical kinetic terms
are considered in a Friedman-Robertson-Walker universe. The deceleration
parameter is calculated by solving the equation of motion and the Friedman
equation, simultaneously. It is shown that the spinor fields can accelerate and
decelerate the universe expansion. To construct realistic models we discuss the
contributions from the dynamical symmetry breaking.Comment: 16 pages, 19 figure
The RhoA transcriptional program in pre-T cells
The GTPase RhoA is essential for the development of pre-T cells in the thymus. To investigate the mechanisms used by RhoA to control thymocyte development we have used Affymetrix gene profiling to identify RhoA regulated genes in T cell progenitors. The data show that RhoA plays a specific and essential role in pre-T cells because it is required for the expression of transcription factors of the Egr-1 and AP-1 families that have critical functions in thymocyte development. Loss of RhoA function in T cell progenitors causes a developmental block that pheno-copies the consequence of losing pre-TCR expression in Recombinase gene 2 (Rag2) null mice. Transcriptional profiling reveals both common and unique gene targets for RhoA and the pre-TCR indicating that RhoA participates in the pre-TCR induced transcriptional program but also mediates pre-TCR independent gene transcription
Directed dispersal by rotational shepherding supports landscape genetic connectivity in a calcareous grassland plant
Directed dispersal by animal vectors has been found to have large effects on the structure and dynamics of plant populations adapted to frugivory. Yet, empirical data are lacking on the potential of directed dispersal by rotational grazing of domestic animals to mediate gene flow across the landscape. Here, we investigated the potential effect of large-flock shepherding on landscape-scale genetic structure in the calcareous grassland plant Dianthus carthusianorum, whose seeds lack morphological adaptations to dispersal to animals or wind. We found a significant pattern of genetic structure differentiating population within grazed patches of three nonoverlapping shepherding systems and populations of ungrazed patches. Among ungrazed patches, we found a strong and significant effect of isolation by distance (r = 0.56). In contrast, genetic distance between grazed patches within the same herding system was unrelated to geographical distance but significantly related to distance along shepherding routes (r = 0.44). This latter effect of connectivity along shepherding routes suggests that gene flow is spatially restricted occurring mostly between adjacent populations. While this study used nuclear markers that integrate gene flow by pollen and seed, the significant difference in the genetic structure between ungrazed patches and patches connected by large-flock shepherding indicates the potential of directed seed dispersal by sheep across the landscape
Very special relativity as relativity of dark matter: the Elko connection
In the very special relativity (VSR) proposal by Cohen and Glashow, it was
pointed out that invariance under HOM(2) is both necessary and sufficient to
explain the null result of the Michelson-Morely experiment. It is the quantum
field theoretic demand of locality, or the requirement of P, T, CP, or CT
invariance, that makes invariance under the Lorentz group a necessity.
Originally it was conjectured that VSR operates at the Planck scale; we propose
that the natural arena for VSR is at energies similar to the standard model,
but in the dark sector. To this end we provide an ab initio spinor
representation invariant under the SIM(2) avatar of VSR and construct a mass
dimension one fermionic quantum field of spin one half. This field turns out to
be a very close sibling of Elko and it exhibits the same striking property of
intrinsic darkness with respect to the standard model fields. In the new
construct, the tension between Elko and Lorentz symmetries is fully resolved.
We thus entertain the possibility that the symmetries underlying the standard
model matter and gauge fields are those of Lorentz, while the event space
underlying the dark matter and the dark gauge fields supports the algebraic
structure underlying VSR.Comment: 19 pages. Section 5 is new. Published version (modulo a footnote, and
a corrected typo
Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity
A new solution with constant torsion is derived using the field equations of
f(T). Asymptotic forms of energy density, radial and transversal pressures are
shown to meet the standard energy conditions, i.e., weak and null energy
conditions according to some restrictions on T0, f(T0) and fT(T0). Other
solutions are obtained for vanishing radial pressure and for specific choices
of f(T). The physics relevant to the resulting models is discussed.Comment: 6 pages, 4 figures, published versio
- âŠ