139 research outputs found

    Structure of surface vortex sheet between two rotating 3He superfluids

    Full text link
    We study a two-phase sample of superfluid 3He where vorticity exists in one phase (3He-A) but cannot penetrate across the interfacial boundary to a second coherent phase (3He-B). We calculate the bending of the vorticity into a surface vortex sheet on the interface and solve the internal structure of this new type of vortex sheet. The compression of the vorticity from three to two dimensions enforces a structure which is made up of half-quantum units, independently of the structure of the source vorticity in the bulk. These results are consistent with our NMR measurements.Comment: 4 pages, 4 figure

    Onset of turbulence in superfluid 3He-B and its dependence on vortex injection in applied flow

    Full text link
    Vortex dynamics in 3He-B is divided by the temperature dependent damping into a high-temperature regime, where the number of vortices is conserved, and a low-temperature regime, where rapid vortex multiplication takes place in a turbulent burst. We investigate experimentally the hydrodynamic transition between these two regimes by injecting seed vortex loops into vortex-free rotating flow. The onset temperature of turbulence is dominated by the roughly exponential temperature dependence of vortex friction, but its exact value is found to depend on the injection method.Comment: To be published in the proceedings of the 24th International Conference on Low Temperature Physics - LT24, in Conference Proceedings of the American Institute of Physic

    Dry demagnetization cryostat for sub-millikelvin helium experiments: Refrigeration and thermometry

    Get PDF
    We demonstrate successful “dry” refrigeration of quantum fluids down to T = 0.16 mK by using copper nuclear demagnetization stage that is pre-cooled by a pulse-tube-based dilution refrigerator. This type of refrigeration delivers a flexible and simple sub-mK solution to a variety of needs including experiments with superfluid 3He. Our central design principle was to eliminate relative vibrations between the high-field magnet and the nuclear refrigeration stage, which resulted in the minimum heat leak of Q = 4.4 nW obtained in field of 35 mT. For thermometry, we employed a quartz tuning fork immersed into liquid 3He. We show that the fork oscillator can be considered as self-calibrating in superfluid 3He at the crossover point from hydrodynamic into ballistic quasiparticle regime.Peer reviewe

    Transition to superfluid turbulence governed by an intrinsic parameter

    Full text link
    Hydrodynamic flow in both classical and quantum fluids can be either laminar or turbulent. To describe the latter, vortices in turbulent flow are modelled with stable vortex filaments. While this is an idealization in classical fluids, vortices are real topologically stable quantized objects in superfluids. Thus superfluid turbulence is thought to hold the key to new understanding on turbulence in general. The fermion superfluid 3He offers further possibilities owing to a large variation in its hydrodynamic characteristics over the experimentally accessible temperatures. While studying the hydrodynamics of the B phase of superfluid 3He, we discovered a sharp transition at 0.60Tc between two regimes, with regular behaviour at high-temperatures and turbulence at low-temperatures. Unlike in classical fluids, this transition is insensitive to velocity and occurs at a temperature where the dissipative vortex damping drops below a critical limit. This discovery resolves the conflict between existing high- and low-temperature measurements in 3He-B: At high temperatures in rotating flow a vortex loop injected into superflow has been observed to expand monotonically to a single rectilinear vortex line, while at very low temperatures a tangled network of quantized vortex lines can be generated in a quiescent bath with a vibrating wire. The solution of this conflict reveals a new intrinsic criterion for the existence of superfluid turbulence.Comment: Revtex file; 5 pages, 2 figure

    Growth of ³He crystals at different magnetic fields

    No full text
    The experiments on ³He crystal growth are carried out in magnetic field up 9 T. The data were analyzed and compared with the results found at zero magnetic field. It was found that the interface and the crystal lattice couple weakly in the presence of an external magnetic field, and we could set an upper limit of the step energy of the , and facets at different magnetic fields

    Experiments on the twisted vortex state in superfluid 3He-B

    Full text link
    We have performed measurements and numerical simulations on a bundle of vortex lines which is expanding along a rotating column of initially vortex-free 3He-B. Expanding vortices form a propagating front: Within the front the superfluid is involved in rotation and behind the front the twisted vortex state forms, which eventually relaxes to the equilibrium vortex state. We have measured the magnitude of the twist and its relaxation rate as function of temperature above 0.3Tc. We also demonstrate that the integrity of the propagating vortex front results from axial superfluid flow, induced by the twist.Comment: prepared for proceedings of the QFS2007 symposium in Kaza

    Vortex lines or sheets - what is formed in dynamic drives?

    Full text link
    In isotropic macroscopic quantum systems vortex lines can be formed while in anisotropic systems also vortex sheets are possible. Based on measurements of superfluid 3He-A, we present the principles which select between these two competing forms of quantized vorticity: sheets displace lines if the frequency of the external field exceeds a critical limit. The resulting topologically stable state consists of multiple vortex sheets and has much faster dynamics than the state with vortex lines.Comment: RevTex, 5 pages, sumbitted to Phys. Rev. Let

    Superconducting Nb-film LC resonator

    Full text link
    Sputtered Nb thin-film LC resonators for low frequencies at 0.5 MHz have been fabricated and tested in the temperature range 0.05--1 K in magnetic fields up to 30 mT. Their Q value increases towards decreasing temperature as sqrt(T) and reaches 10^3 at 0.05 K. As a function of magnetic field Q is unstable and displays variations up to 50%, which are reproducible from one field sweep to the next. These instabilities are attributed to dielectric losses in the plasma deposited SiO_2 insulation layer, since the thin-film coil alone reaches a Q > 10^5 at 0.05 K.Comment: 6 pages, 7 figures, submitted to Review of Scientific Instrument
    corecore